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Electro Magnetic Fields 

TOPIC – 1 : VECTOR ANALYSIS E M F 

1. Introduction: 

In communication systems, circuit theory is valid at both the transmitting end as well as 

the receiving end but it fails to explain the flow between the transmitter and receiver. 

Circuit theory deals with only two variables that is voltage and current whereas 

Electromagnetic theory deals with many variables like electric field intensity, magnetic field 

intensity etc., 

 

Mostly three space variables are involved in electromagnetic field problems. Hence the 

solution becomes complex. For solving field problems we need strong background of vector 

analysis. 

Maxwell has applied vectors to Gauss‟s law, Biot Savart‟s law, Ampere‟s Law and 

Faraday‟s Law. His application of vectors to basic laws, produced a subject called “Field 

Theory”. 

 

2. Scalar and Vector Products 

a) Dot Product: is also called scalar product. Let „‟ be the angle between vectors 

A and B. 
 

 
 

The result of dot product is a scalar. Dot product of force and distance gives work done (or) 

Energy which is scalar. 

an 

b) Cross product: is also called vector product. 
 

 

 

A 

 

S = |S| ân where |S| = |A| |B| Sin


To find the direction of S, consider a right threaded screw being rotated from A to B. i.e. 

perpendicular to the plane containing the vectors A and B. 

 

 A x B = - (B x A) 

 

3. Operator Del (  ): 

Del  is  a  vector  three  dimensional  partial differential operator. It is defined in Cartesian 

system as 

 

Del is a very important operator. There are 3 possible operations with del. They are gradient, 

divergence and curl. 

(Contd….2) 
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k 

 

. D = Lt  s D.ds 

∆V 0 ∆V 

y z 

t   =  ∂t  i +  ∂t  j + ∂t k 

∂x ∂y ∂z 

 

Vector 

Scalar 

∂z ∂y 

∂Ay  + ∂Az .A  = ∂Ax + 

∂x 

 

4. GRADIENT: 

Gradient is a basic operation of a Del operator that can operate only on a scalar function. 

Consider a scalar function „t‟. The gradient of „t‟ can be mathematically defined and symbolically 

expressed as below. 
 

t =  ∂ i   +    ∂   j +     ∂ t 

(Grad t) ∂x ∂y ∂z 

 

 

Gradient of scalar function is a vector function. 

Ex:- Temperature of soldering iron is scalar, but rate of change of temperature is a 

Vector. In a cable, potential is scalar. The rate of change of potential is a vector (Electric field 

intensity). 

5. DIVERGENCE:- 

Divergence is a basic operation of the Del operator which can operate only on a vector 

function through a dot product. 
 

Considering a vector function A = Ax
i
 + A 

j
 + A 

k
 

The divergence of vector A mathematically and symbolically expressed as shown below. 
 

.A =  ∂ i +  ∂ j  + ∂ k . Ax
i
  + A 

j
 + A 

k
 

y z 

(Div A) ∂x ∂y ∂z 
 

Divergence of vector function is a scalar function. 

Let D = flux density vector 
D.ds = flux through the surface ds 

The flux through the entire surface is s D.ds 

Note: Divergence of D gives net outflow of flux per unit volume. 
 

 






6. CURL: 

Curl is a basic operation of a Del operator which can perform only on a vector function 

through a cross product. 

 

 

 

(Contd.…3) 
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xA =   ∂ i +   ∂ j + ∂ k x Ax
i
  + Ay

j
 + Az

k
 

(Curl A)   ∂x   ∂y  ∂z 
 

 

= i j k 

  ∂  ∂ ∂ 
∂x ∂y ∂z 

’ vector Ax Ay Az 
 
 

= ∂Az _ ∂Ay i  _ ∂Az _ ∂Ax j   + ∂Ay  _  ∂Ax k 
∂y ∂z ∂x ∂z ∂x ∂y 

 

Curl of a vector function is a vector function. 

Curl deals with rotation. 

If the curl of a vector field vanishes, it is called Irrotational field. 

Curl is mathematically defined as circulation per unit area. 

Curl v = circulation 

UnitArea 

 
 





7. Laplacian of a Scalar function (t) :- 

 

Double operation 

 . (t) = 
2
 t = ∆t = ∂2

t + ∂2 t  +  ∂
2 t 

∂x2 ∂y2 ∂z2 
 

Laplacian operator 

Laplacian of a scalar function is a scalar function. 

 

8. Laplacian of a Vector function ( A ): 
 

Let  A   = Axi  + Ayj +  Azk 
 

Laplacian of a vector function is a vector function. 

 

9. Concept of field: 

Considering a region where every point is associated with a function, then the region is said to 

have a field. 

If associated function is a scalar then it is a scalar field and if the associated function is a 

vector function then it is a vector field. 

 

(Contd….4) 


2
 t = ∂2 

∂x2 
+ ∂2 

∂y2 
+ ∂2 

∂z2 
t 

∂2Ay + ∂2Ay + ∂2Ay ∂2Az + ∂2Az+ ∂2Az 
∂x2 ∂y2 ∂z2 j  + ∂x2 ∂y2 ∂z2 k + i 


2
A = ∂2Ax + ∂2Ax+ ∂2Ax 

∂x2 ∂y2 ∂z2 

Lt v . dl 

∆s0 ∆s 

Curl v = 
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 ( .A )dv =  A .da 

v s 

 

10. Basic types of vector fields: 

a) Solenoidal vector field (. A =0) 

b) Irrotational vector field (xA =0) 

c) Vector fields that are both solenoidal & irrotational 

d) Vector fields which are neither solenoidal nor irrotational 

 

11. Fundamental theorem of Gradient: 

Statement: consider an open path from „a‟ to „b‟ in a scalar field as shown. The line integral 

of the tangential component of the gradient of a scalar function along the open path is equal to path 

the effective value of the associated scalar function at the boundaries of the open path. 

 
If „t‟ is the associated scalar function, 

then according to the fundamental theorem of gradient 

b 

 (t).dl = t(b) - t(a) 
a 

 

 

 
Corollary-1: 

If  it is a closed path in scalar field, then X 
 

Corollary-2: b 

A line integral  (t).dl is independent of the open path. 

a 

12. Fundamental theorem of Divergence:- (Gauss theorem) 

da 
A 

 

dv 

da 

 

 

 

 

 
Statement: 

Consider a closed surface in vector field. The volume integral of the divergence of the 

associated vector function carried within a enclosed volume is equal to the surface integral of 

the normal component of the associated vector function carried over an enclosing surface. 

If associated vector function is A, then according to fundamental theorem of divergence, 
 
 

 

 

 

(Contd…,5) 

b 

 (t).dl = 0 

a 

Vector field 

Z 
Scalar field 

t b 

tcos



dl 
Y 

a 
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   

da 
A 

  

 

Note: Area vector is always outward normal 

 

13. Fundamental theorem of Curl:- (Stokes theorem) 

Statement: Considering an open surface placed in a vector field, the surface integral of the normal 

component of the curl of the associated vector function carried over the open surface is equal to the 

line integral of the tangential component of the associated vector function along the boundary of the 

open surface. 
 

 

If associated vector function is A, then 
 

 

 
Corollary-1: If it is a closed surface 

 

Since there is no boundary and hence 

Vector field 

 

 

 

 

 

 
 

dl 

 
xA 

 

da 

 

 
 

 

Corollary-2: 

 
   

 A . dl is constant for a fixed boundary.Therefore ,  s( x A ).da is independent 
of the type of open surface. 

 

14. Vector Identities: 

a)  x   = 0 

b)  .  x A = 0 

c)  .  A =   . A +  (. A) 

d)  x  A =   x A +  ( x A) 

e)  x  x A =  ( . A) - 
2
 A 

f)  .   = 
2
 

g) ( F) = ( . F) + F  

h) Div (u x v) = v curl u – u curl v 

i) A . B x C =  B . C x A = C . A x B 

j)  . A x B =  B .  x A – A .  x B 

k) 
2
A =  ( . A) -  x ( x A) 

15. Co-ordinate systems: 

a) Cartesian co-ordinate system (x,y,z) 

b) Spherical co-ordinate system (r,,) 

c) Cylindrical co-ordinate system (r,,z) (Contd….6) 

A . dl = 0 



s  ( xA ).da = A . dl 


S 


( xA ).da = 0 
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Z 

 
 

z P(x,y,z) 

 

 r 

y 

Y 



x 

ACE ACE

Z 

dz 

p2(x+dx,y+dy,z+dz) 

p1(x,y,z) 

z 

y dy Y 

x 

dx 

X 

 

dl = dx i + dy j + dz k 

 

15.a) Cartesian co-ordinate system :- (x,y,z) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Differential length, 
  

 

 

15.b) Spherical co-ordinate system :- ( r,, ) 

X 
 

 

P(r,,) 

r 




Y 





Z 
 

Cartesian to spherical Spherical to Cartesian 
 

X  = rSin Cos  r =  x
2
 + y

2
 + z

2
 

Y  = rSin Sin   = Cos
-1

   Z  

Z = rcos   x
2
 + y

2
 + z

2
 

 = Tan
-1

( y/x) 
 

Note: In Spherical system unit vectors are r, , 

Differential Length Vector: 
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dl = ( dr)r + (rd) + (r sin d) 

 

 

 

 

 

 

Ranges:  r  =  0  

  =  0  

 = 0  2




Differential length, 
 

 

 

 

 

 

 

 

 

15.c) Cylindrical co-ordinate system: ( r, , z ) 

Cartesian to Cylindrical Cylindrical to Cartesian 
 

r =  x
2
 + y

2
 x = r cos

 = tan
-1

 (y/x) y = r sin

z  =  z z = z 

r varying direction 



 varying direction 



 varying direction 

Z 

r 

z P(r,,z) 

Y 



X 
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Note: In cylindrical system unit vectors are r,  , z 

 
 

Differential Length Vector: 

 

Ranges: 

r = 0 

 = 0 2

z   = -  + 




Differential length, dl = (dr) r + (rd)  + (dz) z 

 

16. Differential areas: ( da (or) ds ) 

a) Cartesian system: 

 

dl = dx i + dy j + dz k 

b) Spherical system: 

 

dl = (dr) r + (rd)  + ( r sin d) 





c) Cylindrical system: 

 

dl = (dr) r + (rd)  + (dz) z 
 

 

da = dx dy k 



da= (r
2
 sin d d) r 

 

da = (rd dz) r 
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17. Differential volumes: (dv) 

a) Cartesian system: 

 

dl = dx i + dy j +dz k 
 

 

b) Spherical system: 

 

dl = (dr) r + (rd )  + (r sin d) 


c) Cylindrical system: 

 

dl = (dr) r + (rd)  + (dz) z 
 

18. Dot Product between Spherical & Cartesian system unit vectors. 
 
 

19. Dot Product between Cylindrical & Cartesian system unit vectors. 
 

Cartesian 

Cylindrical 

 
i j k 

r cos sin0 

 

 - sin cos0 

z 0 0 1 

 
 

20. General Curvilinear Co-ordinate System 

Let  h1, h2 & h3   be scale factors 

u1, U2 & u3 be co-ordinate system 

e1, e2 & e3 be unit vectors 

dv = dx dy dz 



dv = r
2
 sin dr d d

dv = rdr d dz 

Cartesian 

i j k 

Spherical 

 

r sin cos sin sin cos

 cos cos cos sin - sin

 - sin cos 0 
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Cartesian system  Spherical system Cylindrical system 

h,h2, h3 Ξ 1,1,1 
 

h,h2, h3 Ξ 1,r, rsin h,h2, h3 Ξ 1,r,1 
 

    

e1,  e2   e3  Ξ i, j, 

u1,u2,u3 Ξ x,y,z 

k 

 
      

e1, e2, e3 Ξ  r, , 

u1,u2,u3 Ξ r, , 

e1, e2, e3 Ξ r, , z 

u1,u2,u3 Ξ r,,z 

In General:    

 

  1     ∂t    e1   1    ∂t   e2  1   ∂t  e3 1) t 

= h1 ∂u1 +   h2 ∂u2 +  h3 ∂u3 

 

  1   ∂  ( A1h2h3)   ∂   ( A2h3h1)  ∂ ( A3h1h2) 

2) . A = h1h2h3  ∂u1 +  ∂u2 + ∂u3 

 

3)  x A 
 

 
 
 
 
 

  1    ∂  h2h3   ∂t + ∂ h3h1   ∂t + ∂ h1h2 ∂t 

4) 2t  = h1h2h3   ∂u1  h1  ∂u1  ∂u2  h2  ∂u2  ∂u3  h3 ∂u3 

 

Let:  A   =  A1 i  + A2  j  + A3 k Cartesian system 
 

= A1 er + A2 e + A3 e Spherical system 

 

= A1 er + A2 e + A3 ez Cylindrical 

In Cartesian system: 
 

1) t = ∂t i + ∂t j ∂t k 
∂x ∂y ∂z 

2)  . A = ∂A1 + ∂A2 + ∂A3 

∂x ∂y ∂z 
 

3)  x A  =   i j k 

 
  ∂  ∂  ∂ 

∂x ∂y ∂z 

 

A1 A2 A3 

4) 2t = ∂2t + ∂2t + ∂2t 

∂x2 ∂y2 ∂ z2 

 

In Spherical system: 
 

1) t  = ∂t r  + 1   ∂t       + 1 ∂t 
∂r r  ∂ r sin ∂

   1  

2)  . A  =  r2 sin

( A1 r
2 sin ) + ∂  ( A2 r sin ) + ∂ (A3r) 

  

∂ ∂







    1  
3)  x A = r2 sin




r 




r




r sin
   ∂  ∂     ∂ 
 ∂r ∂ ∂

 A1 rA2 r sin A3 

∂ 

∂r 

=   1  
h1h2h3 h1e1 h2e2 h3e3 

  ∂  ∂ ∂ 
∂u1 ∂u2 ∂u3 

A1h1 A2h2 A3h3 
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∂t 
∂r 

 
r 

∂ 

∂r 

A1 









4)  2 t =    1   ∂ r2 sin  + ∂ 

r2 sin ∂r ∂



In Cylindrical system: 
 

1) t = ∂t r + 1 ∂t  + ∂t z 
∂r r ∂ ∂z 

+ ∂ r 
 

∂ r sin





2)  . A  =   1    ∂   (A1r) +      ∂ A2 +     ∂ (A3r) 

r ∂r ∂  ∂z 

 

3)  x A   =   1  

r r z 

∂ ∂ 
∂ ∂z 
rA2 A3 

 

 

4)  2 t =    1    ∂ r  ∂t +   ∂  1     ∂t  + ∂ r    ∂t 

r   ∂r   ∂r  ∂  r ∂   ∂z  ∂z 

 

OBJECTIVES 

 

1) If the vectors A and B are conservative then ( Engg.Services,1993) 

a) A x B is solenoidal b) A x B is conservative 

c) A + B is solenoidal d) A – B is solenoidal 
 

2) The value of  d.l along a circular radius of 2 units is ( IES, 93 ) 

a) zero b) 2 c) 4 d) 8

3) which of the following relations is correct? (BEL, 95) 

a)  x (AB) =  A x B – A.B b)  . (AB) = A.B + A .B 

c)  (AB)  = A . B + B. A d) all the three 

4)  . ( x A) is equal to (BEL, 95) 

a) 0 b) 1 c)  d) none of these 

5) Given points A(2,3,-1) and B(4, -50
0
,2) find the distance from A to B 

a) 3.74 b) 4.47 c) 16.7 d) 6.79 

6) Find the nature of the given vector field defined by A = 30 i - 2xy j + 5xz
2
 k 

a) Neither Solinoidal nor irrotational b) Solinoidal & irrotational 

c) Only Solinoidal d) Only irrotational 

7) Find the nature of given vector field defined by A = yz i + zx j + xy k 

a) Neither Solinoidal nor irrotational b) Solinoidal & irrotational 

c) Only Solinoidal d) Only irrotational 

8) A vector field is given by A = 3xy i - y
2
 j . Find c A .dl . where „c‟ is the curve  y = 2x

2
 in 

the x-y plane from (0,0) to (1,2) 

a) -9/2 b) 7/6 c) -7/6 d) 2/3 

 

9) Find the laplacian of the scalar function v = (cos)/r (cylindrical system). 

a) 5 b) 0 c) 7/6 d) 8 

One Mark Questions 

∂t 
∂

r sin 

r 

∂t 

∂
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10) Find  ( 1/r ) , where r = x i + y j + z k 
 

a)  r b) 0 c)  -r d) r
2
 r 

r2   r2 

 
11) Find the line integral of the vector function A = x i + x

2
 y j + y

2
x k around a square contour 

ABCD in the x-y plane as shown. 

Z 
 

 

 
 

Y 
 

 
 

X 

a) 0 b) 10 c) -1 d) 8 

 

12) For the vector function A = xy
2
 i + yz

2
 j + 2 xz k, calculate c A . dl Where c  is the 

straight line joining points (0,0,0) to (1,2,3) 

a) 2 b) 8 c) 16 d) 13 

13) A Circle of radius 2 units is centered at the origin and lies on the YZ-plane. If 

A = 3y
2
 i + 4z j + 6y k, find the line integral c A .dl. Where C is the circumference of the circle. 

a)  b) 8 c) 0 d) /3 

14) Represent point P (0,1,1)m given in Cartesian co-ordinate system, in spherical co-ordinates . 

a) ( 1, /3, ) b) ( 2  , /4, ) c) ( 2  , -/4, ) d) ( 2 , /4, - ) 
 

15) Find   s (x A ) . da   where  A   =  y  i  - x j for the hemispherical surface 

x
2
 + y

2
 + z

2
 = b

2
 ;  z  0 Z 

 
 

a) -2  b
2
 

 

b) 2

Y 
c) -2b 

 

d) 2 b
2
 

 

X 
 

 
 

Key: 1) a 2) a 3) d 4) a 5) d 6) a 7) b 8) c 9) b 10) c 11) d 

12) c 13) b 14) b 15) a 

Two mark Questions 

( 0,0,0) A 
(0,2,0) 

D 

(2,0,0) B  
C (2,2,0) 
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F  |Q1| |Q2| 

E = F 

q 

 

 

TOPIC – 2 : ELECTRIC FIELD INTENSITY E M F 

Electrostatics is a science that deals with the charges at rest. Static charges produce electric 

field. 

 

In electromagnetic theory there is a fundamental problem with regard to the force between the 

electric charges. Let us start our study with an introduction of coulomb‟s law 
 

Coulomb’s Law:  
Q1 

 

F12 A d 

 

Q2 
 

 

B 
F21 

 

 

This law states that considering two point charges separated by a distance, the force of 

attraction (or) repulsion is directly proportional to the product of the magnitudes and inversely 

proportional to the square of the distance between them. 
 
 

d2 

 
F = 

d2 

 
 

 

Force acting on Q1 due to Q2, F12 = 

 

Force acting on Q2 due to Q1, F21 = 

|Q1| |Q2| BA 
40d

2
 

|Q1| |Q2| AB 
40d

2
 

This law is an imperial law and difficult to understand how exactly a force is communicated 

between them. Michel Faraday gives a satisfactory explanation of coulomb‟s law by introducing the 

concept of electric field. 

According to Faraday, Q1 experiences a force because it is placed in the electric field of Q2. 

And Q2 experiences a force because it is placed in the electric field of Q1. 

Concept Of Electric Field: 

An electric field is said to exist at a particular point, if a test charge placed at that point 

experiences a force. 
 

If „q‟ is the test charge and F is the force experienced by the test charge, then the force per 

unit test charge is known as Electric field intensity. Expressed in N/C or V/m 
 

N/C (or) V/M 
 

 

ELECTRIC FIELD DUE TO A POINT CHARGE:  
Z 

r P 
q c 

Y 
+Qc 

X 
Consider a point charge of „+Q‟ c at origin. In order to find electric field intensity at point of 

observation P, consider a Unit test Charge „q‟ c at P. 
 

(Contd …13) 

|Q1| |Q2| 1 

40 
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. 
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0 

0 

 

Therefore, the force experienced by the test charge is 

 

 

 

We know, 

F = 
|Q1| q 

r 
40r

2
 

 

E  = 
F

 

q 
 

 
 

NOTE: Thus electric field intensity is independent of the amount of test charge. 

In Cartesian system: 

Q 

F = 40r
2
 

 
 

. r 

| r | 
 

 
 

ELECTRIC FIELD DUE TO A POINT CHARGE LOCATED AT ANY GENERAL 

POSITION: 
 

+ QC 
 

A P 
- QC 

 
 

E = 
 

 

Q 
 

 

4 (AP)
2
 

AP
 

Q 

A P 
E  = 

4 (PA)
2
 

PA
 

 

Electric field is always directed away from the point charge towards the point of 

observation(P), if it is a positive charge. 

 

Similarly, electric field is directed away from the point of observation towards the point 

charge, if it is a negative charge. 

 

PRINCIPLE OF SUPERPOSITION: 

The principle of superposition says that electric field due to any charge is unaffected by the 

presence of other charges. 

 

In a system of discrete charges the net electric field is obtained by the vectorically adding up 

the individual electric fields. 

E1 

E2 

E3 
 

 

Net electric field intensity E = E1 + E2 + E3 +…….. 

(x i + y j + z k) Q 

40(x
2
+y

2
+z

2
)

3/2
 F = 

r 
Q 

40r
2
 

E = 
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Electric field due to continuous charges distribution: 

 

Continuous charge distribution is categorized into 3 types. 

 
 

a) Line charge distribution: 

If the charge is continuously distributed along the line with line charge density “L” c/m, it is 

called line charge distribution. 

 

b) Surface Charge Distribution: 

If the charge is continuously distributed over a surface with surface charge density “s “ c/m
2
, 

it is called surface charge distribution. 

 

c) Volume Charge Distribution: 

If the charge is continuously distributed over a volume with volume charge density “v “  

c/m
3
, it is called volume charge distribution. 

 

Electric field due to an infinite line charge: Z L c/m 

dz A 

z ra =r
2
+z

2
 

 

 

X r 

z  

 
dz B 

Y 
dEB 

P 
 

dEA 

Consider an infinite line charge with a line charge density L c/m placed along the z-aixs. Let the 

point of observation „P‟ be on x-y plane. 

 

Net electric field at P, 
 

 

Electric field due to infinite Line charge located at any general position. 

L 

 
L c/m 

i) 

 
ii) 

E at P = 

E at P = 

 
 

20NP 

L 

20NP 

NP, 
 

PN, 

if it is a +ve line charge. 

if it is a -ve line charge. 

Electric field due to a finite Line charge(2L) along the perpendicular bisector. 

Z 

dz A 

L 

L c/m 

ra =r
2
+z

2
 

X 

r 

 

 

 

dz B 

Y 
dEB 

P 
 

dEA 

0 

r 
2 r 

    L  
E = 

r L 

L
2
 + r

2
 

L 

20r E = 

N 

P 

L 
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Electric field due to a finite line charge located at any general position. 
B 

i) 

 
ii) 

E at P = 

E at P = 

L . 
 

 

20NP 

L . 
 

 

20NP 

BN 

BN
2
 +NP

2
 

  BN  
 

 

BN
2
 +NP

2
 

 

 

NP, 
 

PN, 

 
if it is a +ve line charge. 

A 

if it is a -ve line charge. 

N L c/m 

 

P 

 

Electric field due to a finite line charge 

(OA  OB) 

 
i) EH = 

 
 

L 

40d 
L 

 
 

(cos – cos ) 

(sin – sin) 
ii) EV = 40d dEH 

 
 

iii) Net electric field intensity, E = E
2

H + E
2

V 

dE 

iv) If „O‟ is the mid point, =(180-). As line 

tends to infinity,  0,   Ev = 0 

 

Electric field due to Rectangular line charge along it axis. 
 

dEAB 

dEBC 

 

 

D 

dECD 

Z 
P 

 

 




dEDA 
 

 
L c/m 

C     
Q 

d 
N

 

R Y 

a 2a 

A 
M 

 2b 
 

X 
 

Eat P = EAB + ECD + EBC + EDA 

= 2 [ EAB + EBC ] 

 

op 
L 

20d E = 

E =  Ld  .   a +  b  

 0  a
2
 +b

2
+d

2
 b

2
+d

2
 a

2
+d

2
 K 

A L c/m 



dq 

x 


(90-) P 
o 

d 
(90-) 

B 
dEv 





B 
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Corollary:1 If it is a square line charge a=b 
 

Corollary:2 If d=0 i.e. the electric field at orgin 

 

Electric field due to a circular line charge along its axis:- 
 

 

 

 

 

 

 

 

 
 

Y 
 

 

 

 

Consider two diametrically opposite elementary displacements located at A & B. Let point of 

observation „P‟ be along „Z‟ axis. 
 

 

 

Electric field due to an infinite charge sheet: 

 

 

dEA 
Z 

dEB 

 

r b 
P 

ra 
Z 
 

s c/m
2
 

 
 

B 
r d A 

x 
da 

Consider two diametrically opposite elementary surface charges located at A & B. Let point 

of observation „P‟ be along Z axis. 
 

The electric field due to the surface charge sheet is independent of the distance of the point of 

observation (P) from the surface charge sheet. It has a constant magnitude equal to s/20 and has a 

direction normal to the surface charge sheet. 

The field direction is away from the surface charge sheet towards the point of observation if it 

is a +ve charge sheet. 

 

 

E = 0 

E = 2Lda . 

o2a
2
+d

2
 . (a

2
+d

2
) K 

 
Eat P =  L az . z 

2o(a
2
+z

2
)
3/2

 

 s . Z 

E = 2o 

dEA Z dEB 

r b 
P 

Bdl 
z r 

L c/m 
a 

a 
o
 

d

X 
Adl 

Y 



(Contd …18) 

 

 

ACE ACE

 E 

 . E = (v / 0) 

 

Electric field due to a circular disc along its axis:-  
dEA 

 
 

dEB 
Z 

 
P 

z 

 

 

 

S c/m
2
 

 

B a Y 
o d

X A da 

Consider two diametrically opposite elemental surface charges located at A & B. Let point of 

observation „P‟ be along the z- axis. 

 

Gauss’s Law: Z 
 

 

 

 

Y 
 

 

Let us consider a point charge of „+Q‟C at origin. Consider a closed surface. 

The electric field at any point over the closed surface 

E = (Q / 40r
2
) . r 

Differential area, da = r
2
Sindd r 

 2

. da  =    Q . r
2
  Sin d  d 

s 40r
2
  0 0 

. da = (Q/0) 

s 
Though the above result is deduced with respect to a spherical closed surface enclosed a point 

charge, it is a general result applicable for any closed surface enclosing any charge in any form. 

 

  E . da  =  (1/0)  Qenclosed = (1/0)  v dv 

s v 

 

Gauss law in integral form (or) Maxwell‟s 1
st
 equation 

Using divergence theorem, 

 ( . E) dv  =  (1/0)  v dv 

v v 

 

  point form of Gauss law 

Eat p = s (1 – z / a
2
 + z

2
) z 

20 

 E 

X 

 r 

+Qc 
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substitute D = E 
 

(or) 

Maxwell’s 1
st
 Equation 

 

Statement:- 

Surface integral of normal component of electric field Vector is equal to (1/o) times charge 

enclosed. 

(or) 
Surface integral of normal component of electric flux density vector is equal to the charge 

enclosed. 

 

Gaussian Surface: 

Gauss‟s law is very useful to find out electric field intensity. To find we construct an 

imaginary surface called “Gaussian Surface” 

 

The electric field must be uniform at every point on this surface. It must be normal to the 

surface considered. 
 

OBJECTIVES 

 

1) Inside a hollow conducting sphere (Gate – 96) 

a) electric field is zero 

b) electric field is a non-zero constant 

c) Electric field changes with the magnitude of the charge given to the conductor. 

d) Electric field changes with distance from the center of the sphere 

 

2) A metal sphere with 1m radius and a surface charge density of 10 c/m
2
 is (Gate – 96) 

enclosed in a curve of 10m side. The total outward electric displacement normal to the surface of 

the cube is 

a) 40 coulombs b) 10coulombs c) 5 coulombs d) none 

3) If V,W,Q stands for Voltage, energy and charge, then V can be expressed as (Gate – 96) 

a) V= dq 
dw 

b) V= dw 
dq 

c) dV= dw 
dq 

d) dV= dq 
dw 

4) In the infinite plane, y=6m, there exists a uniform  surface charge density of (Gate – 95) 

(1/600)  c/m
2
. The associated electric field strength is 

 

a) 30 i V/m b) 30 j V/m c) 30 kv/m d) 60 J v/m 

5) The electric field strength at a distance point, P due to a point charge, +q, located at the origin, is 

100V/m. If the point charge is now enclosed by a perfect conducting metal sheet sphere whose 

center is at the origin, then the electric field strength at the point , P outside the sphere bcomes 

a) zero b) 100  V/m c) –100 V/m d) 50 V/m 

6) Copper behaves as a (Gate – 95) 

a) Conductor always 

b) Conductor or dielectric depends on the applied electric field strength 

c) Conductor or dielectric depends on the frequency 

d) Conductor or dielectric depends on the electric current density. 

 D . da = Qenclosed =  v dz 

s v 

One mark Questions 

 . D = v 



(Contd …20) 

 

 

ACE ACE
 

7) Given the potential function in free space to be v(x) = 50x
2
+ 50y

2
 + 50z

2
 volts, the (Gate – 01) 

magnitude (in v/m) and the direction of electric field at point (1, -1,1), where the dimensions are 

in meters, are 

a)  100; (i+j+k) b) 100/3; (i-j+k) 

c)   100/3; [(-i +j-k)/3] d) 100/3; [(-i –j –k)/3] 

 

8) In a uniform electric field, field lines and equipotentials (Gate- 94) 

a) are parallel to one another b) intersect at 45

c) intersect at 30 d) are orthogonal 

 

9) When a charge is given to a conductor (Gate –94) 

a) It distributes uniforming all over the surface b) It distributes uniformly all over the volume 

b) It distributes on the surface, inversely proportional to the radius of curvature 

c) It stays where it was placed. 

 

10) The mks unit of electric field E is (IETE) 

a) Volt b) volt/second c) volt/metre d) ampere/metre 

 

11) Unit of displacement density is 

a) c/m b) c/m
2
 c) Newton d) Maxwell‟s equation 

 

12) Two infinite parallel metal plates are charged with equal surface charge density of the same 

polarity. The electric field in the gap b/w the plates is 

a) The same as that produced by one plate b) Double of the field produced by one plate 

b) Dependent on coordinates of the field point d) Zero 

13) Three concentric spherical shells of Radii R1, R2,R3(R1<R2<R3) carry charges –1,-2,and 4 

coulombs, respectively. The charge in coulombs on the inner and outersurfaces respectively, of 

the outermost shell is. (IES – 95) 

a) 0 and 4 b) 3 and 1 c) –3 and 7 d) –2 and 6 

14) A positive charge of „Q‟ coulombs is located at point A(0,0,3) and a negative charge & 

magnitude Q coulomb is located at point B (0,0,-3). The electric field intensity at point c(4,0,0) is 

in the 

a) negative X-direction b) negative Z-direction 

c) positive X-direction d) positive Z-direction 

15) The force between two point charges of 1nc each with a 1mm separation in air is (IES- 01) 

a) 9 x 10
–3

 N b) 9 x 10
-6

N c) 9 x 10
-9

N d)9 x 10
-12

N 

16) Two charges of equal magnitudes are separated by some distance. If the charges are increased by 

10%; to get the same force b/w them, their separation must be 

a) increased by 21% b) increased by 10% 

c)   decreased by 10% d) non of the above is correct 

 

A small isolated conducting sphere of radius r1 is charged with +Qc. Surrounding this sphere 

and concentric with it is a conduction spherical cell, which posses no net charge. The inner radius of 

the shell is r2, and outer radius r3. All non-conducting space is air. 

17) The electric field distribution from 0 to r1 will be 

a) zero b) same c)increases d)decreases 

Two mark Questions 

Common data for Q. No. 17, 18 & 19 
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r =1 
r=2 

r=3 

 

18) The electric field from r1 to r2 will be 

a) zero b) same c)decreases d) increases 

19) The electric field from r2 to r3 will be 

a) same b) zero c) decreasing d) increasing 
 

 

Infinite surface charge sheets are placed along the Y-axis with surface charge density +s  

c/m
2
 and -s c/m

2
 respectively. 

20) The electric field intensity between the sheets will be 

 

 
21)  

 

 
 

Infinite charges are placed along the X – axis at x = 1, 2, 3, ........... 

Z 
 

X 

0 1 2 3 4 …………

Y 
 

22) An infinite number of charges, each equal to „Q‟ c, the electric field at the point x = 0 due to 

these charges will be 

a) Q b) 2Q / 3 c) 4Q/3 d) 4Q/5 

 

23) The electric field at x = 0, when the alternate charges are of opposite in nature, will be 

a) 4Q/3 b) 4Q/5 c) 1.5Q d) 3Q 
 
 

The spherical surfaces r = 1, 2 & 3 carry surface charge densities of 20 nc/m
2
, -9 nc/m

2
 and 2nc/m

2
 

respectively. 
 

 

 

 

 

 

 

 

24) How much electric flux leaves the surface at r = 5 ? 

a) 2  10
-3

 b) 8 c) 3  10
-9

 d) 8  10
-9

 

25) Find electric flux density at P(1, -1, 2) 

a) 8.83  10
-9

 r b) 3.3  10
-10

 r c) 3.8  10
-3

 r d) 40  10
-9

 r 

Key: 
 

1. a 2. a 3. b 4. c 5. c 6.a 7. c 8. d 9. a 10. c 11. b 12. d 13. b 

14. b 15.a 16. b 17. a 18. c 19. b 20. d 21. a 22. c 23. b 24. d 25. b 

Common data for Q. No. 20 & 21 

Common data for Q. No. 22 & 23 

Common data for Linked answer 

a) zero b) s j 

20 

c) s 

0 

-j d) s j 

0 

The electric field intensity outside the sheets 

a) zero b) s j 

20 

will be 

c) s 

0 

-j d) s j 

0 
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ACE EDUCATIONAL ACADEMY 

 

 

TOPIC – 3: ELECTRIC POTENTIAL, WORK & ENERGY E M F 
 

Electric Potential: 
Z

 

 

 

 

 

 

 

Consider +QC of charge at origin. 

 

 

+Qc 

 
X 

b 

r(b) 

r p 
Y 

r(a) 

a 

Let the point of observation is at a distance „r‟ from the origin on the open path ab. 

We know, 

Eat p = (Q / 40r
2
) . r 

Displacement vector dl = (dr) r + (rd)  + (rsind) 









The integral E . dl is independent of the open path and depends only on the starting and 

ending point. Now let the starting point be replaced by a reference point () and the ending point be 

replaced by the point of observation (p). 

p 

The quantity  E . dl attached with a „negative‟ sign is known as electric potential at the 



point of observation p. 

 








Note: For finite charge distribution, „infinity‟ is recommended as the reference point and for “infinite 

charge distribution” other than infinity can be assumed as the reference point. 

 

Potential difference between two points: 
 

 

Relation between electric potential and Electric field (V & E): 

We know that, B 

V(A) – V(B) =    E . dl --- (1) 

A 

The fundamental theorem of gradient, 

B 

V(B) – V(A) =  (V) . dl 

A 
B 

V(A) – V(B) =  -  (V) . dl   --- (2) 

A 

V(A) – V(B) = –  E . dl =  E . dl 

B A 

B A 

p 

V(p) = -  E . dl 



b 

 E . dl =  (Q /40)[1/r(a) – 1/r(b)] 

a 
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Z 

ra 

L c/m 

a b 

rb 

0 

  E = 0 

 

 

 

 

Compare (1) & (2) 
 

i) Taking „curl‟ on both sides 

  E =   (-V) 

 

 Maxwell’s 3
rd

 Equation 

 

ii) Taking „divergence‟ on both sides 

 . E = .(-V) 

= 
2
V  0 

 





 Therefore, an electrostatic field is irrotational (or) 

conservative but not solenoidal. Z 

p 
Electric potential due to a point charge (Absolute potential): 

We know, p r 

V(p) = -  E . dl 
 Y 

 
(). 

Due to finite charge, replace reference point  with infinity 

 
r X 

V(p) = -  (Q / 40r
2
) . dr 



+QC 

 





Electric potential due to a discrete charges: 

 

 

 
Q1 r1 

V(p) = V(Q1) + V(Q2) + V(Q3) + …… 

 

= Q / 40r1 + Q / 40r2 + ……. 

Q2
   r2  p 

Q3  r3 

 

Electric Potential due to a continuous charge distribution: 

V(p) =  (L dl) / 40r  for line charge distribution 

 

=  (s  da) / 40r  for surface charge distribution 

s 

 

=  (v dv) / 40r  for volume charge distribution 

v 

 

Electric potential due to an infinite line charge distribution: 

 

Consider an infinite line charge placed along the Z – axis. 

 

 Electric potential difference, 
Y

 



X 

 

 

E = - V 

V = (L / 20) ln (rb/ra) 

V(p) = Q / 40r 

 . E  0 



(Contd …24) 

 

 

ACE ACE


2
V = - / 0 

r = a
2
 + h

2
 

 

 
 

 

Electric potential due to a charged ring: 

 







where 

 
 

Potential due to a charged disc: 

 

Electric potential at p, 

 
 





i) Potential at the centre of the disc, 

substitute h = 0 

 





Poisson’s equation and Laplace’s equation: 

From the differential form of Gauss law, 

 . E =  / 0   --- (1) 

p 

 

L c/m 

 

 

 

 

 

 
r 

h p 

But,  

E = -V --- (2) 

Substitute, 

.(-V) =  / 0 

 

  Poisson‟s equation 

For a charge free region i.e.,  = 0 

 Laplace‟s equation 

 

Both these equations are effectively used to determine the potential and electric field 

distribution without knowledge of source charge distribution. 

Solution to Laplace’s equation in Cartesian Co – Ordinates: 

Laplace equation, 
2
V = 0 

 (
2
V / x

2
) + (

2
V / y

2
) + 

2
V / Z

2
) = 0 

Case1: „V‟ is a function of only „x‟ 

 





Case2: „V‟ is a function of only „y‟ 

 





Case3: „V‟ is a function of only „z‟ 

 



r 
h 

d a 

dl 

 c/m
2
 s 

a 
   

V = Az + B 

V = Ay + B 

V = Ax + B 


2
V = 0 

V = (sa / 20) 

V = (s / 20)[a
2
 + h

2
 – h] 

V = (La) / (20r) 
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Fa 
q 

a 
F 

b 





Solution of Laplace equation in spherical co – ordinates: 


2
V = 0 

 1/r
2
Sin [ /r(r

2
sin V/r) + /(Sin V/) + /[(1/Sin) V/)] = 0 

 

Case1: „V‟ is a function of „r‟ only 

 





Case2: „V‟ is a function of „‟ only 

 





Case3: „V‟ is a function of „‟ only 

 





Solution of Laplace equation in Cylindrical Co – ordinates: 


2
 V = 0 

 

 1/r[1/r(r V/r) + /(1/r . V/) + /z(r V/z)] = 0 

 

Case1: „V‟ is a function of „r‟ only 

 





Case2: „V‟ is a function of „‟ only 

 





Case3: „V‟ is a function of „z‟ only 

 





Note: Here A and B are arbitrary constants, whose values are determined by using appropriate 

boundary conditions. 

 
 

Work Done: 

+ – 

+ – 

+ – 

A charge „q‟ kept in the electric field experiences a force in the direction of electric field. F is 

the force experienced by the charge „q‟. Fa is the force applied in opposite direction. If the magnitude 

of Fa is equal to F, the charge remains in equilibrium. If Fa is slightly greater than F, the charge can 

be moved from point a to point b. The small work done to move the charge „q‟ by a distance „dl‟ is 

Fa.dl. Total work done in moving the charge from a to b can be obtained. 

V = Az + B 

V = A + B 

V = A ln r + B 

V = A + B 

V = A ln tan(/2) + B 

V = -A / r + B 



(Contd …26) 

 

 

ACE ACE

p 
r 

r2 a 

r1 

p 

W = -q  E . dl = q V(p) 



 

 

Work done =  Fa . dl  Where Fa = -F 

b b 

=  Fa . dl  =  -q   E . dl [∵ F = Eq] 
a a 

 








Energy: If point „a‟ is replaced by the reference point „‟ and point „b‟ is replaced by point of 

observation (p), then 
 

 

p 

Where V(p) = - E . dl 



The above expression represents the energy because this amount of work done is stored in the 

form of electrostatic energy. 

 

Energy stored in a system of ‘n’ point charges: 

Consider a system having „n‟ number of point charges. 

Energy stored in this system = ½ (V1Q1 + V2Q2 + …… + VnQn) 

In compact form 
 

 

OBJECTIVES 
 
 

1. A spherical conductor of radius „a‟ with, charge „q‟ is placed concentrically inside an uncharged 

and unearthed spherical conducting shell of inner and outer radii r1 and r2 respectively. Taking 

potential to be zero at infinity, the potential any point with in the shell (r1 < r < r2) will be 

a) q / 40r (GATE’95) 

b) q / 40a q 

c) q / 40r2 

d) q / 40r1 

 

2. Which of the following equation(s) is/are correct? 
  

a) J = E b) V = E c) D = E d) all the above 

 

3. A point charge of +1nc is placed in a space with a permittivity of 8.85  10
-12

 F/m as shown. The 

potential difference VPQ between two points P and Q at distance of 40mm and 20mm respectively 
from the point charge is 

Q
 

a) 0.22 KV 20mm 

b) – 225 V P 

(GATE’03) 

c) – 2.24 KV + 
d) 15 V 1nc 40mm 

n 

W = 1/2  Qi Vi 

i =1 

One Mark Questions 

b 

Work done = -q  E . dl 

a 
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B 

 

 
 

4. One volt equals 
a) one Joule 

 

b) One Joule / Coulomb 

 

c) One Coulomb / Joule 
(BEL’95) 

d) None 

5. Equation 
2
V = -/ is called the 

a) Poisson‟s equation b) Laplace equation 

 
c) Continuity equation 

(IIT) 
d) None 

 

6. Two point charges Q and –Q are located on two opposite corners of a square as shown. If the 

potential at the corner A is taken as 1V, then the potential at B, the centre of the square will be 

a) zero Q A (IES’93) 

b) 1/2 V 

c) 1 V 

d) 2 V 

-Q 
 

7. The potential inside a charged hollow sphere is 

a) zero b) same as that on the surface c) less than that on the surface d) none 

 

8. Two spheres of radii „r1‟ and „r2‟ are connected by a conducting wire. Each of the spheres has been 

given a charge Q. Now, 

a) larger sphere will have greater potential b) larger sphere will have smaller potential 

c) both the spheres will have same potential d) smaller sphere will have zero potential 

 

9. Potential of a sphere is given as 

a) Q / 40r b) Q / 0r c) Q / 40r
2
 d) Q

2
 / 40r

2
 

10. A sphere of radii 1m can attain a maximum potential of 

a) 3  10
6
 V b) 30 KV c) 1000 V d) 3 KV 

 

11. Joule / Coulomb is the unit of 

a) electric field intensity b) potential c) charge d) None 
 
 

 

12. 
 

 

 

 

An infinite number of concentric rings carry a charge Q each alternately positive and 

negative. Their radii are 1,2,4,8,…. metres in geometric progression as shown. The potential at the 

centre of the rings will be (IES’92) 

 

a) zero b) Q / 120 c) Q / 80 d) Q / 60 

 

13. Find the work involved in moving a charge of 1C from (6,8,-10) to (3,4,-5) along a straight line in 

the field E = -xi + yj - zk. 

a) 24.5 Joules b) 25.5 Joules c) 19 Joules d) zero 

 

14. Find the work done in moving a point charge 3 c from (2,, 0) to (4, ,0) in the field E = 10
5
/r r 

+ 10
5
 z z. 

a) 0.207 Joules b) 1.27 Joules c) 0.8 Joules d) zero 

 

15. Five equal point charges of zone are located x = 2,3,4,5 and 6 m. Find the potential at the origin. 

a) 180 V b) 183 V c) 210 V d) 261 V 

Two Mark Questions 

2 - Q +Q 

1 
0 

4 
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d 
x = d 

 

 

16. A line charge of 10
-9

/2 c/m lies on the Z – axis. Find rab if „a‟ is at (2,0,0) and b is at (4,0,0) 

a) 2V b) 4.24 V c) 6.24 V d) 8.24 V 

 

17. A point charge of 0.4 nc is located at (2,3,3) in Cartesian system. Find rab if A is (2,2,3) and B is 

(-2,3,3). 

a) 2.7 V b) 3.6 V c) 4.7 V d) 8.1 V 

 

18. Determine the potential at (0,0,5) m caused by a total charge 10
-8

c distributed uniformly along 

a disc of radius 5m lying in the Z = 0 plane and centered at the origin. 

a) 12.2 b) 17 V c) 14.8 V d) 13.2 V 

 

19. 3 point charges of 1C, 2C and 3C are located at the corner of an equilateral triangle of 1m side 

each. Find the energy stored in the system. 

a) 9 / 40 Joules b) 40 / 3 Joules c) 11 / 40 Joules d) 30  10
9
 Joules 

20. If the potential is given by V = 5r
2
 where „r‟ is distance from origin. How much charge is located 

with in a sphere of 1m radius centered at the origin. 

a) 90 0 b) – 300 c) 30 0 d) –30 / 0 
 
 

A spherical shell of radius „a‟ contains a total charge of Q0 uniformly distributed over its surface. 

 

21. Find the potential inside the spherical shell 

a) Q0
2
 / 4 b) Q0 / 4

2
0a c) Q0 / 40a d) zero 

 
22. Find the potential outside the spherical shell 

a) Q0
2
 / 4 b) Q0 / 40a c) zero d) Q0 / 40r 

 
 

Two parallel infinite conducting plates separated by a distance „d‟ along the X – axis have a potential 

V0 and zero respectively as shown. 
 

x = 0 X 

 
23. Find the expression for voltage distribution 

a) V = V0(1 + d/x) b) V = V0(1 – x/d) c) V = V0(1 – d/x) d) 0 

 

24. Find the electric field intensity 

a) (V0 / x) i b) V0 i c) (V0 / d) . i d) (x / V0) . i 
 

 
Key:  

1.a 2.d 3.b 4.b 5.a 6.c 7.b 8.c 9.a 10.a 11.b 12.d 13.b 

14.a 15.d 16.c 17.a 18.c 19.c 20.b 21.c 22.d 23.b 24.c 
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p = q s 

 

 

TOPIC – 4: DIELECTRICS E M F 
 

Polar and Non – Polar Dielectrics: 

Dielectric is nothing but an insulator. It is capable of storing energy for a short duration. 

Dielectrics are classified as polar and non – polar type. 

 

Electric Dipole: Two equal and opposite charges separated by a small distance is called a dipole. 

 

Dipole Moment: Dipole moment is a product of charge and distance between charges. 

+q 

Dipole moment s 

–q 

E Applied 

Fig(1) fig(2) 
Polar Dielectric without Polar Dielectric with 

applied electric field applied Electric field 

 

Polar Dielectrics: The charges in the molecules of polar type have permanent displacement from 

each other. The molecules have permanent dipole moment. They are randomly oriented as shown in 

fig(1). Net dipole moment zero until an electric field is applied. 

When an electric field is applied, the dipoles orient in a particular direction such that the 

induced electric field is in a direction opposite to the applied electric field. This can be seen in fig(2). 

 

Non – Polar Dielectrics: In non – polar dielectrics, the centres of positive and negative charges 

coincide each other. When non – polar dielectric is kept in the electric field, a small displacement 

takes place between the charges. 

 

Potential due to a dipole: Let us consider a physical dipole located on Z – axis and the point of 

observation P(r, , ). Z 



+q   
s 

-q 

ra P(r,,) 

r 

rb 

 

 

It is required to determine the potential at „p‟ which is at a distance „r‟ m from the midpoint of the 

dipole. It is easy to handle this problem using spherical co – ordinates. 

Potential at „p‟ is the sum of potential values due to positive and negative charges. 

Therefore, the potential at „p‟ due to the physical dipole is given by 

V(p) = V1 + V2 

= q / (40ra) + (-q) / (40rb) 

 V(p) = q / (40)[1/ra - 1/rb] 

 

 V(p) = q/(40)[(rb – ra) / rarb] 

– + – + 

– + – + 
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





ra 

r 

rb 

C 

E = p / (40 r
3
)[2cos r + sin ] 

 

 

Case: When the point of observation is at a very large distance  =  =  and ra = rb = r 

rb – ra = BC 

 V(p) = q / (40) [BC / rarb] 

= q / (40) [Scos / r
2
] [Q BC = S cos] +q A 

s 

[Q p = q S]  

-q B 
 

 
 

Electric field intensity due to a Dipole: 

 

We know E = -  V 

 in spherical system 

 




Observations: 

i) Potential due to an electric dipole V(p)  1 / r
2
 

ii) Electric field intensity due to an electric dipole E  1/r
3
 

 

Polarization (P) 
Some materials already contain the internal electric dipoles. When such materials are 

subjected to an electric field these internal electric dipoles align themselves along the direction of 

applied electric field. 

Many materials do not contain any internal electric dipoles. When such materials are 

subjected to an electric field, internal electric dipoles are generated and align themselves along the 

direction of applied electric field. 

Qualitatively defined as production and / or alignment of internal electric dipoles. 

Quantitatively defined as effective dipole moment per unit volume. 

 





units for polarization is coulomb / m
2
. 

 

Susceptibility(): 

Susceptibility is one less than relative permittivity. 

 = r – 1 

Displacement density is directly proportional to electric field intensity. 

D  E 

D = 0 r E ---- (1) 

When a dielectric is kept in the electric field, a net dipole moment exist since the dipoles align 

in one particular direction in the case of polar dielectrics. Polarization density (p) is directly 

proportional to the applied electric field. 

P =  0 E ---- (2) 

From (1) & (2) 

 P  =  0E 

D 0rE 

=  / r 

= (r – 1) / r [∵  = r – 1] 

 



V(p)  1/r
2
 

V(p) = (p cos) / (40r
2
) 

P = [(r – 1) / r] . D 



 

P = p / dv 





E  (1/r
3
) 
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 . E = (f + b) / 0 







Gauss’s Law for Dielectrics: 

We know that differential form of Gauss law in free space. 

 

Where f  free volume charge density. 
 

Consider a row of dipoles as shown. 

The positive charge is nullified by the negative charge near by (or) the head and tail gets 

cancelled throughout except at the beginning and end. In other words, a negative charge and a 

positive charge can be seen at the boundaries. This charge is called „Bound charges‟. 

 

Gauss‟s law is modified as follows. 
 

Where b  bounded volume charge density 

 

Statement: Surface integral of normal component of electric field is equal to 1/0 times the sum of 

free charge and bound charge. 

 
Point form of Gauss‟s law is, 

 
 

Dielectric Boundary Conditions: 

When flux lines flow through a single medium, they are continuous. When they flow through 

a boundary formed by two different types of dielectrics, they get refracted. This can be studied by 

using boundary conditions. Surface of glass board is glass air boundary. Surface of porcelain 

insulator is a porcelain air boundary. 
 

Boundary condition for Electric flux density vector (D): 
Dn2 

Pill Box da 
D2 

(2) r2 2 h charged sheet 

(1) r1 1 with density sf c/m
2
 

D1 

Dn1 

 

Consider a boundary formed by two dielectrics as shown in the figure. An infinite charged 

sheet with charge density s c/m
2
 is placed at the boundary. The dielectric constants of the media 1 

and 2 are r1 and r2 respectively. 1 is the angle of incidence. 2 is the angle of emergence. Dn1 and 

Dn2 are the normal components of flux density vectors. 

Consider a pill box at the boundary such that it encloses both the media. Apply Gauss‟s law to 

the pill box under limiting condition h0. 

 D . da = Qf enclosed 
S 

Dn2 da – Dn1da = sf  A 

Dn2A – Dn1A = sf A 

– + – + – + – + – + 

 
  

 E . da = 1/0 (Qf + Qb) 
S 

 . D = f + b 

 . E = f / 0 
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


Statement: Normal component of flux density vector is discontinuous by an amount equal to the 

charge density of the sheet. 

If charged sheet is not present at the boundary, sf = 0. 

 





Statement: Normal components of flux density vectors are equal. They are continuous at the 

boundary provided there is no charged sheet at the boundary. 
 

 

Boundary condition for Electric field intensity vector(E): 
Second boundary condition deals with tangential 

component of electric field. E1 and E2 are the electric 

 
A B E2 

Et2 

field intensities in the media 1 and 2 respectively. 

Et1 and Et2 are the tangential components of the electric 

field in media 1 and 2 respectively. 

Consider the rectangular path ABCDA at the 

boundary such that it encloses both the media. 

(2) r2 

(1) r1 

D 

E1 

2 h 

1 Et1 
C 

l 

 

We know that static electric field is a conservative field. 

 E . dl = 0 

Apply this equation to the contour ABCDA under limiting condition h  0. 

 E . dl +  E . dl +  E . dl +  E . dl = 0. 

AB BC CD DA 

As h0, second and fourth terms tends to zero. 

Et2  dl – Et1dl = 0 

Et2 l – Et1 l = 0 

 





Statement: Tangential components of electric field intensity vector are equal and they are continuous 

at the interface. 

Relation between angle of incidence (1) and angle of emergence(2): 

Dn2 = D2 Cos2 

Assume interface does not contain any surface charge 

Apply boundary condition for D, 

Dn2 = Dn1 [Q sf = 0] (2) r2 

D2 
E2 

2 

D2cos2 = D1 cos1 (1) r1 E1t= E1sin1 E2t = E2Sin2 

2E2cos2 = 1E1cos1  ---- (1) 1 

Apply boundary condition for E, D1 
E2t = E1t E1 

E2sin2 = E1sin1 ---- (2) Dn1 = D1 Cos1 

(2)  (1) 

  E2sin2 =  E1sin1 

2E2cos2 1E1cos1 

 





If r1, r2 and angle of incidence are given, angle of emergence can be calculated using the above 

equation. 

Tan1  =  r1 

Tan2 r2 

Et1 = Et2 

Dn1 = Dn2 

Dn2 – Dn1 = sf 
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  d1  

1 
  d2  

2 

d1 d2 

r1 r2 

v1 v2 

 

 

TOPIC – 5: CAPACITANCE E M F 
 

Capacitor is formed using two conducting media with an insulator in between them. 

 

Capacitance is the property of a dielectric to store electrical energy. An electric field is  

present between the plates since a voltage is applied between them. The dielectric is subjected to 

electric stress and strain. Therefore some energy can be stored in the dielectric. Capacitance is similar 

to inertia. The speed of a vehicle cannot change suddenly due to inertia. Similarly voltage across 

capacitor cannot change suddenly. 
 

Capacitance of a parallel plate capacitor: 

 
We know that, c = Q/v 

V 

= |  sda | 

|- E.dl | 

 

=  s (Area)  

 s i . dx i 





=  s (A)  

  s d 

   dx 
o 

 

 
   + + + + + + x = d 

 

Electric field 
 

- - - - - - - - - x = 0 

 

= s (A) 

  s x d 





where A = cross section area of plate 

 
 

Capacitance of parallel plate capacitor with two media 

 
 

V = V1 + V2 

= E1d1+ E2d2 

= (D/1) d1 + (D/ 2) d2 

 

= (Q/A1) d1 + (Q/A2)d2 
 

= Q/A + v 
 

 

V= CV d1 
+

 d2  

A 1 

A 

C = 

  d1  

0r1 
+

 

2 

 

 
  d2  

0r2 

 c = A 
d 
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  d1 

1 

 

 

C =   0A  

+ 
  d2 

2 

 

Note: If n number of dielectrics are present, the equation can be written as 

 

 








Capacitance of Spherical capacitor: 

Consider a Gaussian sphere. 

Apply Gauss‟s law 
D.da = Qenclosed 

D. 4r
2
 = Q 

 

 E = Q/ 4or
2
 

r
 

electric field exists only in the direction of r 

a a 

we know,   v = -    E. dl   = -  Q/4r
2
 . dr 

b b 

 
 

= Q/4 [1/a - 1/b] 

 

Q = 4 v ab 

b – a 

substitute Q = CV 

CV = 4 v ab 

b – a 
 

 

Capacitance of cylindrical capacitor (or) cable: 

 

Consider a Gaussian cylinder (G). 

Apply Gauss‟s law 

D.da = Qenclosed 

D.2rl = Q 
 

E =  Q r [∵ l = 1mt] 
2r 

we know that, a 

V = -  E.dr 
b 

C = 4 ab 

b – a 

d i 

 i 

C = 0A 

n 


i=1 

a b 

r g 

Q 

+ + 

+ 

+ 
a 

+ 
+ 
+ 

+ 
b 

+ r + 
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+ P 

x 

EA 

EB 

d - x 

Ref 

(d-r) 

d 

C 

C =      

ln((d-r)/r) 

 

 
 

a 

= -   Q dr 
b 

2r 

b 

=  Q [ ln r] 
 

2 
a
 

 

=  Q [ lnb – lna] 

2


V =   Q ln (b/a) 

2


Substitute Q = CV 

 
Farad/m 

 

Note: To calculate the total capacitance, multiply with total length 

Capacitance of a 2-wire transmission line: 

Single phase transmission line is shown. Conductors A and  B  are  

uniformly charged with +L c/m and -L c/m respectively. Radius of A 
each conductor is „r‟ and spacing is „d‟ meters. Consider a point „P‟ at a 

distance „x‟ meters from the reference. The distance between the wire B 

and the point P is (d-x). EA and EB are the electric field intensities due 

to wires A and B respectively. Direction of electric field is away from 

the positive charge or towards the negative charge. 

 

F/m 

Let C
1
 be the capacitance per conductor. 

C = c| 
x  c|  =  c| 

c| + c| 2 

 

 

 

B 

 

 

 

 

 

 

 

 

 
c| c| 

 

c| = 2c 

 

F/m/conductor 
 

 

Energy stored in capacitor: 

we know that energy stored in „n‟ point system, 

n 

W = 1/2  q v(pi) 
i=1 

= 1/2  (sda) v 
s 

= 1/2  s v  da 
s 

= 1/2 x Q x V x a 

= 1/2 QV [∵ Q = CV] 

a 

+ 
+ 

+ 

+ 

+ 

C 

V 

- 
- 

- 

- 

- 

V 

c|   =  2  

ln ((d-r)/r) 

C =  2  

ln(b/a) 
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Joules 
 

 

Energy density = Energy 
 

Volume 

= 1/2 cv
2
 

A x d 

 

= 1/2 x 1 x  A  x  v
2
 

Axd d 

= (1/2)  (v/d)
2
 [∵v/d = E] 

= 1/2 E
2
 

= 1/2 (E) E 

= 1/2 DE 

 

D and E can be written as D.E since D & E are in same direction 

Energy density = 1/2 D.E 

Energy = 1/2 D.E x volume 
 
 

 

Force of Attraction between plates: 
A 

Between the oppositely charged plates there is a force of + 
attraction. F is an externally applied force to move the plate B from  +  
p1 to p2. The work done is stored in the form of energy in the + 
additional volume Adx. + 

Work done = Additional energy + 

F dx = (Energy density) volume d 

F dx = ( 1/2 E
2
) Adx 

F = 1/2 E
2
A Newtons 

F/A = l/2 E
2
 N/m

2
 

 

B 
- P1 P2 
- 
- 

F 
- 
- 

dx 

 





































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W = 1/2  D.E dv 
v 

Force /unit area = 1/2 E
2
 

W = 1/2 cv
2
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K = V 

 

 

TOPIC – 6: CURRENT DENSITY AND CONTINUITY EQUATION E M F 
 

Classification of currents: 

For theoretical convenience currents can be classified into 3 types 

a)  Line currents b) Surface currents c) Volume currents 
 

 

Line Currents 
 c/m 

 

 
Motion of electric charges along a line represents a line current. Every line current is 

associated with a mobile line charge density  c/m. An elementary segment l = V  t along the line 

current. The amount of mobile charge contained at any instant within the elementary segment is 

(Vt). where „V‟ is the velocity of the charges. 

 

All these mobile charges coming out of segment in t seconds is called current. 

I = (Vt) 

t 
 
 

where  = I / V = mobile line charge density 
 

 

 
Surface Currents: 

 c/m
2
 

A 
B 

 

l


C 
D 

Vt 

 

Flow of electric charges over a surface represents surface currents. Every surface current is 

associated with a mobile surface charge density  c/m
2
. 

 

Consider a surface current sheet with mobile surface charge density  c/m
2
 and an 

elementary rectangle ABCD. 

 

The amount of mobile charges contained at any instant within the elementary rectangle is 

“ l(Vt)”. All these mobile charges within the elementary rectangle coming out in „t‟ seconds is 

called current. 
 

I = l(Vt) 

t 

I =  V l

 I = V = K 
l




, A/m 
where K = surface current density, A/m 

vt 
B 

A 

l 

 

 

I =  V 
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 J 

dv 

 

  

J = V 

 

 
 

 

Volume Currents: 
 c/m

3
 

 

 

 

 

Flow of electric charges over a volume represents volume currents. Every volume current is 

associated with a mobile volume charge density  c/m
3
. Considering an elementary cylinder within 

the volume current region, the amount of mobile charges contained at any instant is “ a(V  t)”. 

 

All these elementary mobile charges coming out of the elementary cylinder in „t‟ seconds is 

called current. 

I = a (Vt) 

t 

I = Va

I  

a
= V = J 

 
 

 A/m
2
 

Where J = Volume current density, A/m
2
 

 

Continuity Equation:  c/m3 

 

Enclosing 

surface 

 

Let us consider a region carrying volume currents. For convenience let the charges flow 

outward. The net outward current through the enclosing surface can be obtained as. 
 

 

--- (1) [ from volume currents] 
 

 

And also, the rate of reduction of electric charges within the encloser. 

 

= - d/dt   dv --- (2) 

V 

 

According to the law of conservation of charges the above two equations are equal 

 

. da = - d/dt   dv 

s V 

 

According to the fundamental theorem of divergence 

 ( . J) dv = - /t   dv [ only one variable] 

V V 

 

Integration is done with respect to volume and differentiation is done with respect to time. 

a

 v

t 

 

 

I =   J . da 
s 
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Therefore /t can be taken inside the integral since the variables are different. 

 

 ( . J) dv = -  ( / t) dv 

V V 
 

 Maxwell’s 5
th

 equation. 
 

 

The above equation is called continuity equation or Fifth Maxwell‟s equation. 

Divergence of J gives net outflow of current per unit volume. 

Net overflow of current per unit volume is negative of time rate of charge per unit volume. The above 

equation is also called as law of conservation of charge. 

 

The above equation explains continuity of current. According to law of conservation of 

charge, charge can be neither created nor destroyed. Some charge keeps flowing in the circuit. 

Existing charge cannot be destroyed and new charge cannot be created. 

 

Ohm’s Law: 
 

 

 

 

 

 
V 

 
Current flowing through a conductor is directly proportional to the potential difference across 

it, provided temperature is kept constant. 

 

I  V 

The proportionality constant is conductance 
I = GV 

 

= V / R 

 

=   V  

l / A 

 

I = VA / l 
 

 I   = V  
 

 1 

A l 



[1/ = ] 
 

 

The above equation is called point form or field form of Ohm‟s law. 

 

Joule’s Law: 

According to Joules law, whenever current flows through a conductor, heat energy is 

produced. This is proportional to I
2
, R and t. 

 

Heat Energy  I
2
Rt 

Energy  (I
2
Rt) / J1 Where J1 is called Joule‟s constant. 

We know that power = I
2
R = V

2
/R = VI 
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E 

J 

   

A      B     

l 

 

  

J =  E 

 

 

 . J = -  / t 
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Multiply and divide with volume 

P = VI . Al / Al 

 

Rearrange the terms, 

P = V  l (Al) 
l A 

 

Substitute E = V/l, J = I/A and volume = Al 

 P = EJ volume 

 

EJ can be written as E.J since E and J are in the same direction 

P = (E . J) volume 

 





According to Joule‟s law, energy dissipated per second is volume integral of dot product of 

the vectors E and J. 

 

Relaxation Time: 

To study relaxation time we start with ohm‟s law and equation of continuity. 

J =  E and  . J = - ( / t) 

 . E = - ( / t) 

 .  E = - ( / t) 

 


 
 . D = 

- 

t 

  +  = 0 
  

 t 

 +   = 0 
 

t 



 = 0 e
-(/)t

 where 0 is charge density at t = 0. 

The charge density decays exponentially as time passes with time constant equal to / seconds. 

This time constant is called relaxation time. 

 

Conductance – Capacitance Theorem: 

G = Conductance, C = Capacitance 

 = Conductivity,  = permittivity  = resistivity 

 

According to conductance theorem, conductance of an insulated medium is equal to /

times the capacitance of the insulation provided between two conducting media. 

G = ( / ) C 

We know that C = A / l and R = l / A  G = A / l = A / l 

 G = A 

C  A 
 

 

This theorem is very useful to obtain the expression for conductance of the configuration if 

capacitance of that configuration is already known. Conductance can be obtained by multiplying 

capacitance expression with /. 

G = (/) C 

P =  (E . J) dv 

V 
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Observation: 

We know that I = 

s 

 
. da 

Substitute ohm‟s law J = E 

 

I =   E . da  (1) 

s 

According to Gauss law,  = Q 

 D. da = Q 

s 

  E . da   = Q /   (2) 

s 

Compare (1) and (2) 
 

 

Substitute I = V/R and Q = CV 

V =  . CV 

R 




Duality: 

If two equations are in similar form, they are said to be dual equations. 
Duality means that it is possible to pass from one equation to another equation by suitable 

interchanges of dual quantities. 

We know that the conductance of the dielectric between the plates is A/l. Capacitance is 

A/l. If we know the capacitance of configuration, conductance of that configuration can be obtained 

by merely replacing  with . 

For example capacitance of cylindrical capacitor is 

C = [(2) / log(b/a)] 

Conductance can be obtained by replacing „‟ with „‟. 

 G = [(2) / log(b/a)] 

similarly, 

Conductance of spherical capacitor is, C = (4ab) / (b – a) 

Conductance can be obtained by replacing „‟ with „‟. 

 G = (4ab) / (b – a) 

Therefore,  and  are dual quantities. 

 

Basic Properties of conductors: 

1) Electric field is zero inside a conductor. If there is a field inside, the charges experience a force and 

they move outwards. Therefore, there is no charge inside. 

Q = 0, D = 0 and E = 0 

2) The charges can only reside on the surface of the conductor and not inside a conductor. 

3) Conductor is an equipotential region. 

4) Electric field intensity at all points on the surface of a conductor must be normal to the surface. 

5) Electric charges located outside a conductor cannot produce an electric field inside a completely 

closed cavity with in the conductor. 

I =  . (Q / ) 

1  =  G =  C 

R 

 J 
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OBJECTIVES 
 

 

1. The mica layer (r = 7) in a parallel plate capacitor with an effective area of 120mm has a 

damaged section equivalent to a hole of 0.5mm diameter. Which of the following would be 

significantly affected by damage. (GATE’91,EEE) 

a) capacitance b) charge c) dielectric breakdown d) tan 



2. Which of the following equations represents the Gauss‟ law in homogeneous isotropic medium? 

a)  D . ds  =    dV b) V  H = D c)  . J +  = 0 d)  . E = / (GATE’92,EEE) 
 

3. The line integral of the vector potential A around the boundary of a surface „S‟ represents 

a) flux through in the surface S b) flux density in the surface S (GATE’93,EEE) 

c) magnetic density d) Current density 

 

4. When a charge is given to a conductor (GATE’94,EEE) 

a) it distributes uniformly all over the surface 

b) it distributes uniformly all over the volume 

c) it distributes on the surface, inversely proportional to the radius of curvature 

d) it stays where it was placed 

 

5. Energy stored in a capacitor over a cycle, when excited by an a.c source is (GATE’97) 

a) the same as that due to a d.c source of equivalent magnitude 

b) half of that due to d.c source of equivalent magnitude 

c) zero d) none 

 

6. When the plate area of a parallel plate capacitor is increased keeping the capacitor voltage 

constant, the force between the plates (GATE’99) 

a) increases b) decreases c) remains constant 

d) may increase or decrease depending on the metal making up the plates 

 

7. The potential difference between the forces A and B of a uniformly polarized infinite slab shown 

in figure. A (IES’93) 

a) pd / 0( - 1) p 

b) pd / 0 

c) pd / 0 

d) pd( + 1) / 0 B 

 
8. If n is the polarization vector and K is the direction of propagation of a plane electromagnetic 

wave, then (IES’93) 

a) n = K b) n = - K c) n . K = 0 d) n  K = 0 
 

9. Consider the following statements regarding field boundary conditions: (IES’95) 

1. The tangential component of electric field is continuous across the boundary between two 

dielectrics. 

2. The tangential component of electric field at a dielectric – conductor boundary is non – zero 

3. The discontinuity in the normal component of the flux density at a dielectric conductor 

boundary is equal to the surface charge density on the conductor. 

4. The normal component of the flux density is continuous across the charge free boundary 

between two dielectrics. 

Of these statements 

a) 1,2 & 3 are correct b) 2,3 & 4 are correct c) 1,2 & 4 are correct d) 1,3 & 4 are correct 

(Contd …42) 
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10. Consider the following statements associated with a parallel plate capacitor. (IES’95) 

1. Capacitor is proportional to area of plates 

2. Capacitance is inversely proportional to distance of separation of plates 

3. The dielectric material is in a state of compression. 

Of these statements 

a) 1,2 & 3 are correct b) 1 & 2 are correct c) 1 & 3 are correct d) 2 & 3 are correct 

 

11. Two electric dipoles aligned parallel to each other and having the same axis exert a force F on 

each other, when a distance „d‟ apart. If the dipoles are at a distance „2d‟ apart, then the mutual 

force between them would be: (IES’95) 

a) F/2 b) F/4 c) F/8 d) F/16 

 

12. When a lossy capacitor with a dielectric of permittivity  and conductivity  operates at a 

frequency , the loss tangent for the capacitor is given by  (IES’95) 

a)  /  b)  /  c)  /  d) 



13. The properties of a medium are (NTPC’98) 

a) permittivity, permeability, insulation b) permittivity, permeability, conductivity 

c) permeability, resistivity, inductivity d) permeability, flux, magnetism 

 

14. The characteristic impedance of a co – axial cable depends on (CIVIL SERVICES) 

1. ratio of outer and inner diameter 

2. length of the cable 

3. logarithmic ratio of outer and inner diameter 

4. logarithmic ratio of outer and inner diameter and inversely as the square root of dielectric 

constant. 

The correct statements are 

a) 3 & 4 b) 2 & 3 c) 1, 3, 4 d) 4 only 

 

15. The unit of 00 is (NTPC’98) 

a) Farad Henry b) m
2
 / sec

2
 c) amp sec / volt sec d) Newton metre

2
/coulomb

2
 

 

16. Kirchoff‟s current law for direct currents is implicit in the expression (IES’97) 

a)  . D = f b)  J . n ds = 0 c)  . B = 0 d)   H = J + D/t 
 

17. Poisson‟s equation for an inhomogeneous medium is (IES’97) 

a) 
2
V = -  b)  . (V) = -  c) 

2
(V) = -  d)  . (V) = - 



18. A material is described by the following electrical parameters as a frequency of 10 GHz .  = 10
6
 

mho / m,  = 0 and  / 0 = 10. The material at this frequency is considered to be 

(0 = 1/36  10
-9

 F/m) (GATE’93) 

a) a good conductor b) a good dielectric 
c) neither a good conductor nor a good dielectric d) a good magnetic material 

 

19. Copper behaves as a (GATE’95) 

a) conductor always b) conductor (or) dielectric on the applied electric field strength 

c) conductor (or) dielectric depending on the frequency 

d) conductor (or) dielectric depending on the electric current density 

 

20. For a dipole antenna (GATE’94) 

a) The radiation intensity is maximum along the normal to the dipole axis 

b) The current distribution along the length is uniform irrespective of the length 

c) The effective length equals its physical length 

d) The input impedance is independent of the location of the feed – point 
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21. The intrinsal impedance of a lossy dielectric medium is given by (GATE’95) 

a) j /  b) j /  c)  j / ( + j) d)  / 


22. An antenna, when radiating, has a highly directional radiation pattern. When the antenna is 

receiving, its radiation pattern (GATE’95) 

a) is more directive b) is less directive c) is same d) exhibits no directivity at all 
 
 

 

 

1. A composite parallel capacitor is made up of two different materials with different thickness (t1 

and t2) as shown. The two different dielectric materials are separated by a conductivity foil F. The 

voltage of the conductivity foil is. (GATE’03, EEE) 

a) 52 V 

 
b) 60V 

 
c) 67 V 

 

d) 33 V 

100V 

F 

 
0V 

 

2. A parallel plate capacitor has an electrode area of 100 mm
2
, with a spacing of 0.1 mm between the 

electrodes. The dielectric between the plates is air with a permittivity of 8.85  10
-12

 F/m. The 

charge on the capacitor is 100V. The stored energy in the capacitor is (GATE’03, EEE) 

a) 8.85 PJ b) 440 PJ c) 22.1 nJ d) 44.3 nJ 

 

3. A circular ring carrying a uniformly distributed charge Q and a point charges –Q on the axis of the 

ring are shown. The magnitude of the dipole moment of the charge system is (IES’93, EEE) 

a) Qd 

b) QR
2
 / d 

 

c) Q R
2
 + d

2
 

d) QR 

 

4. Find the polarization in a dielectric material with r = 2.8 if D = 3  10
-7

 c/m
2
. 

a) 1.93  10
-7

 c/m
2
 b) 10

-19
 c/m

2
 c) 6.602  10

-2
 c/m

2
 d) 0 

 

5. Determine the value of electric field in a dielectric material for which  is 3.5 and P is 2.3  10
-7

 

c/m
2
. 

a) 7.9  10
-2

 b) 62.1  10
-3

 c) 74.3  10
2
 d) 83  10

3
 

 

6. Calculate the emerging angle by which the vector E changes its direction as it passes from a 

medium with r = 100 into air making an angle of 45 with the interface as it enters 

a) 90 b) 0.57 c) 0.89 d) 45



7. Electric flux lines are incident in the porcelain insulator of r = 6 at an angle of 45. The electric 

field in the insulator is 1000V/m. Determine the electric field in the air and the angle at which flux 

lines are emerging out 

a) 0.46, 400 V/cm b) 2.25, 4000 V/cm c) 7.2, 4925 V/cm d) 9.46, 4302 V/cm 

Two Mark Questions 

-Q 

d 

R 

Q 

r2 = 4; t2 = 1mm 

r1 = 3; t1 = 0.5mm 
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A parallel plate capacitor consists of two square metal plates of side 500 mm and separated by 

a 10 mm slab of Teflon with r = 2 and 6mm thickness is placed on the lower plate leaving an air gap 

of 4mm thick between it and upper plate. A 100V is applied across capacitor. 

 

8. Find the capacitance between the plates 

a) 2.2  10
-8

 F b) 3.16  10
-10

 F c) 4.26  10
-6

 F d) zero 

 

9. Find the electric flux density of Teflon and air 

a) 0.12 c/m
2
, 0.12 c/m

2
 b) 0.35 c/m

2
, 0.12 c/m

2
 c) 0.11 c/m

2
, 0.35 c/m

2
 d) 0 , 0 

 

10. Find the electric field intensity of Teflon and air 

a) 12555 V/m, 6776 V/m b) 13553 V/m, 6776 V/m 

c) 0, 5826 V/m d) 38265 V/m, 38265 V/m 

 

11. Find the electric potential of Teflon and air 

a) 54.21 V, 40.66 V b) 34.11 V, 34.11 V c) 0, 0 d) 1.1 V, 2.4 V 

 

12. Two conducting planes are located at Z equal to „0‟ and 6 mm. In the region between 0 < Z < 2 

mm there is a perfect dielectric with r1 = 2, for 2 < Z < 5 mm, r2 = 5. Find the capacitance per 

square meter of surface if the region for 5 < Z < 6 mm is filled with air. 

a) 2.8 nF/m
2
 b) 3.4 nF/m

2
 c) 1.1 nF/m

2
 d) 2.2 nF/m

2
 

 

13. A 2 F capacitor is charged by connecting it across 100V D.C supply. The supply is now 

disconnected and the capacitor is connected in parallel with another uncharged 2F capacitor. 

Assuming no leakage of charge, determine the energy stored in capacitor. 

a) 0.01 Joules b) 0.005 Joules c) 1.15 Joules d) 0.5 Joules 
 

14. A parallel plate capacitor with air as dielectric has a plate area of 36 cm
2
 and separation of 1mm. 

It is charged to 100V by connecting it across a battery. If the battery is disconnected and distance 

is increased to 2mm, calculate the energy stored, assuming no leakage of charge 

a) 0.6  10
6
 Joules b) 0.2  10

-4
 Joules c) 0.23  10

4
 Joules d) 1  10

-6
 Joules 

 

15. A Co – axial capacitor of the compressed gas type is to be designed to have 60  10
-12

 F 

capacitance and is to work at 200 KV dc. The maximum voltage gradient should not exceed 

300KV per cm. If the outside diameter of the inner conductor is 5cm, determine the inner 

diameter of the outer conductor and length of capacitor. Take the relative permittivity of gas to be 

1.0. 

a) 3.1 cm, l = 5m b) 4.2 cm, l = 1m c) 8.3 cm, l = 7m d) 5.7 cm, l = 7m 
 

Key: 
One Marks: 

 

1.c 2.a 3.a 4.a 5.c 6.a 7.a 8.c 9.d 10.a 11.d 12.c 13.b 14.d 

 

15.b 16.b 17.a 18.a 19.a 20.a 21.c 22.c 

 

Two Marks: 

 

1.b 2.d 3.a 4.a 5.c 6.b 7.d 8.b 9.a 10.b 11.a 12.b 13.b 14.d 

 

15.d 

Linked Question from Q.No 8 to 11 
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 =   B. da 
S 

 

 

TOPIC – 7: BIOT – SAVART’S LAW E M F 
 

Magnetostatics deals with magnetic field produced by current carrying conductor. 

Magnetic field: 

A static magnetic field can be produced from a permanent magnet or a current carrying 

conductor. A steady current of I amperes flowing in a straight conductor produces magnetic field 

around it. The field exists as concentric circles having centres at the axis of conductor. 

If you hold the current carrying conductor by the right hand so that the thumb points the 

direction of current flow, then the fingers point the direction of magnetic field. The unit of magnetic 

flux is weber. One weber equals 10
8
 maxwells. 

Magnetic flux density (B): 

The magnetic flux per unit area is called magnetic flux density (or) magnetic induction vector. 

The unit of B is weber/m
2
 (or) Tesla. 

The magnetic flux through any surface is the surface integral of the normal component of B. 

The magnitude and direction of B due to a current carrying conductor is given by „Biot – savart‟s 

law‟. 

B = d /da 

d = B . da 

 

 

Magnetomotive force ( M.M.F) 

M.M.F is produced when an electric current flows through a coil of several turns. The M.M.F 

depends on the current and the number of turns. Therefore, the unit for M.M.F is ampere turns. MMF 

is the cause that produces flux in a magnetic circuit. 

Reluctance (s): 

Reluctance is the opposition to the establishment of magnetic flux and can be defined as the 

ratio of M.M.F to the flux produced. 

It is directly proportional to the length of the magnetic path and inversely to the cross 

sectional area of the path. The reciprocal of reluctance is called “PERMEANCE”. 

Biot – Savart’s Law ( second Maxwell is equation): 

 

BIOT and SAVART from their experimental observation deduced a mathematical expression 

for the elementary magnetic flux density produced by a current element at any particular point of 

observation (p). According to this law considering a current element of length „dl‟ carrying a current 

„I‟, the magnetic flux density at a point of observation „p‟ is elementary field intensity. 

Magnetic field intensity due to entire conductor can be obtained by line integral. 

H =  Idl x r 

4 | r
3
| 

 

B =  /4r
3
  Idl x r [∵B = H] 

Taking divergence on both sides, 

div.B = 0/4| r |
3
  div (Idl x r ) 

I 

dl 

 c/m 

p 

r 
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we know that  . ( u x v ) = v. curl u – u.curl v 
 

div (Idl x r ) = r . curl Idl – Idl. curl r 

 

.B = 0   ( r. curl Idl – Idl. curl r ) 

4| r |
3
 

 

Curl deals with rotation. The current element vector and distance vector have no rotation. 

Therefore curl of Idl and curl of r vanish. 

 

.B = 0  (0 – 0) 

4| r |
3
 

 

 Maxwell’s 2
nd

 equation. 
 

 

This equation is called point form, field form, vector form or differential form of BIOT – 

SAVART law. It is also called second Maxwell‟s equation. 

 

Magnetic field due to an infinite straight conductor 
 

 

 

 

 
 

Y 
 

X 
 

 

Consider an infinite straight conductor along the z-axis and carrying a current I along the 

positive Z-direction. Let „p‟ be the point of observation on the x-y plane at a distance „r‟ from the z- 

axis. 

 

Let Idl = small current element 

We know that, 

 

dB = o (Idl x r ) 

4 | r |
3
 

Net magnetic field, 



B = o /4  rdz / (z
2
 + r

2
)
3/2

 

-


B = o I /2r 

Z  c/m 

dl 


z 
r 

r 

I 
p 

.B = 0 
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B = oI .cos 

2r 

B = 0I ( cos - cos) 

4r 





Magnetic field due to a finite conductor: 

 
Z 

 

 

 

 

 

 
 

Y 
 

 

X 

M 

 

Let us consider a finite conductor of length MN, for the sake of generality OM  ON. Let „p‟ be the 

point of observation on XY plane. 
 

 
 

Net magnetic field 

 

 
 

Corollary-1: 

 

Magnetic field due to infinite conductor 

i.e  = 0,  = 180
o
 

 





Corollary-2: 

 

Magnetic field due to semi infinite conductor 

 = 90
o
,  = 180

o
 

 
 

Corollary-3: 

 

Magnetic field due to finite along the perpendicular bisector 

i.e OM = ON 

 = 180-





B = oI . 

4r 

N 

dl 

z 
r 

0 

I  
r 

p 



B = 0I . 

2r 
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B = 0I z 

4a 

B = 0I z 

2a 



Magnetic field due to a circular current carrying loop along its axis: 
 

 

 

 

 

 

 

 

 

 

Y 
 

 

X 

 

Consider a circular loop of radius „a‟ lying on a x-y plane with centre at origin and carrying a 

current I as shown. 

 

Let the point of observation „p‟ be at a distance „d‟ from the centre of the loop. Considering 

two diametrically opposite current element located at A & B. 

 
Let dBA & dBB vectors are corresponding elementary magnetic flux densities at P. Resolving 

dBA & dBB vectors horizontal and vertical components, we find that horizontal components get 

cancelled and vertical components added up. 
 
 

Net magnetic field 

 

 

Corollary-1: 
 

Magnetic field due to circular current carrying loop at its centre i.e d = o. 

 








Corollary-2: 

 

Magnetic field due to a semicircular current carrying loop at its centre 
 





Corollary-3: 

 

Magnetic field due to a thin circular coil of „N‟ turns along the axis 
 

 

Nturns 
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dBB Z 
dBA 

p 

d 
B 

d 

r 

a 



I 
A 

B = 0NIa
2
 . z 

2(a
2
+d

2
)
3/2

 

B = 0I a
2
 . z 

2(a
2
+d

2
)
3/2
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Magnetic field due to an infinite circular solenoidal along its axis: 
 

 

 

X-axis 
 

 

 

 

Let us consider an infinite circular solenoidal of radius „a‟ with „n‟ no. of turns per unit length 

(n=N/l) and carrying a current I. Let the axis of a solenoid coincides with x-axis and origin coincides 

with the point of observation. Consider an elemental thickness „dx‟ at a distance „x‟ from the origin. 

 

Therefore, the elemental magnetic flux density due to this elemental section at point of 

observation „o‟ is given by 

dB = 0 (ndx) Ia
2
 

2(a
2
 + x

2
)
3/2

 

 

 Net magnetic field 
 

 

The magnetic field due to an infinite circular solenoid is totally confined within the solenoid, 

uniform and axially directed and is equal to B = 0nI. 

 

The direction of the magnetic field depends on the sense of current carrying by the solenoid 

and the right hand screw rule. 

Magnetic field due to a finite circular solenoid along its axis: 
 

 

 

 

X 
 

 

 

 

 
 

Let us consider a finite circular solenoid of radius „a‟ and length „l‟. let „n‟ be the no. of turns 

per unit length and „I‟ be the carrying current. Assume that the solenoid axis coincides with the x- 

axis and the origin coincides with centre. Let „p‟ be the point of observation at a distance „d‟ from the 

centre. 
 








Corollary-1: 

Magnetic field due to an infinite circular solenoid 

i.e  = 0,  = 0 

 





(Contd …50) 
 

\ 

dx 

a 

I N 

x 0 

l/2 l/2 

  dx  

x 
a
 


0 p 



I d x-d 
(l/2-d) 

l 

B = 0nI 

B = 0nI (cos+cos) 

2 

B = 0nI 
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B = 0k (-j) 

2 

 

 

Corollary-2: 

 

Magnetic field due to a finite circular solenoid at the centre 

i.e  = 





Corollary-3: 

 

Magnetic field at the end of a finite circular solenoid 

 = 90
o
, 





Magnetic field due to an infinite surface current sheet:  

dBB Z 

 P 


dBA  

   

ra d
 

dy rb 

0 

dy xy-plane 

Y 
y y 

k 

B A 

X 
 

Let us consider an infinite current sheet lying on x-y plane carrying a surface current along  

the positive x-direction ( K ) with a surface current density K. 

 

Each strip carries an elementary current dI = kdy. 

Net magnetic field 

 

It the point of observation is below the surface current sheet, then 
 

 
Note: 

The magnetic field due to an infinite surface current sheet is independent of the distance of the point 

of observation from the sheet. The magnetic field due to an infinite sheet is a constant magnitude of 

0k /2 and has a direction given by the vector product of k x n. Where n is a unit vector normal to the 

sheet directed away from the sheet towards the point of observation. 
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B = 0nI cos

B = 0nI cos

2 

B = 0k j 

2 



:: 51 :: 
 

 

. 

ACE ACE

ACE EDUCATIONAL ACADEMY 

 x H = J 

 B . dl = 0 Ienclosed 

C 

2r 

 
 

 

TOPIC – 8: AMPERE’S LAW (Ampere’s circuital law) E M F 
 

When the magnetic field has some form of symmetry the magnetic flux density can be 

determined with the application of law known as Ampere‟s Law. 

 
 

Consider an infinite straight conductor lying along the 

Z-axis carrying a current I along the +ve Z-axis. Let „c‟ be the 

closed path enveloping around the conductor. Considering any point 

„P‟ on the closed path, the magnetic flux density at the point „P‟ is 

given by 

Z 

Ampere‟s 
b r 

loop 
P 

I 
0I 

B = 
2r 

dl = (dr) r + (r d)  + (dz) z [cylindrical system] 

B . dl = 
0I

 

 

r d





 B . dl = 
0I 

2r 

2

r  d

C 0 
= 0I 

 
 

Ampere‟s law in integral form 
 

 

Statement : Considering any closed path in a magnetic field the line integral of tangential 

component of the magnetic field around the closed path is equal to o times current enclosed. 

Differential form of Ampere’s Law: 

 B . dl  =  oIenclosed 

 (( x B) . da = o










J . da 

 

 

(or) 

Point from (or) Maxwell’s 4
th

 equation 
 
 

2. Variation of Magnetic flux density (B) due to a circular conductor: 

 

A solid cylindrical conductor of radius „a‟ carries a direct current 

„ I ‟. 

 

Inside (r < a) : 

 

Considering the ampere loop A and applying Ampere‟s Law, 
 

(Contd …52) 



 

 x B = oJ 

Bi =  oIr 

2a
2
 

a 

Ai r A0
 

 B  r 


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a 
b 

B 

 

B3 =   oI (c
2
-r

2
) 

2r (c
2
-b

2
) 

 

 

Outside ( r > a) : 
 

Considering an ampere Loop Ao and applying 

Ampere‟s Law, 
 

 
 

 

 
B 

 

0I 

2a 

 

 

 

 

 

r 
r = a 

3. Variation of Magnetic flux density (B) due to Hallow conductor 
 

Case(i) : (r < a) 

Construct an Ampere‟s Loop such that r < a. 

Apply Ampere‟s Law 
 

 

Case (ii) : (a < r < b) 

 

Construct an ampere‟s loop and apply Ampere‟s Law r 

 

Case(iii) : (r > b) 

 

Construct an ampere‟s loop and apply Ampere‟s Law 

4. Variation of Magnetic flux density (B) due to a pair of coaxial transmission line conductors 
 

Case I: (0 < r < a) 
 

Considering an ampere loop and applying Ampere‟s law, 

 
Case II: (a < r < b)  

B2 = oI 

2r 

Case III: (b < r < c) 
 

 

Case IV: ( r > c) 
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B1 = oI r 

2a
2
 

B  1/r 

Bo = oI 

2r 

Bi = 0 

oI (r
2
-a

2
) 

2r (b
2
-a

2
) 

B = 

  oI 

2r 
B = 

Z 

a 

b c 
I I 

I 

 

 

B4 = 0 
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TOPIC –  9: MAXWELL’S EQUATIONS E M F 
 

 

1. Maxwell’s Equations for time varying fields: 

Differential Form Integral Form 

1. Div D =  1.  D.da =  dv 

s v 

 

2. Div B = 0 2.  B.da = 0 

s 

 

3. Curl E = - B 3.  E. dl = -   B. da 

t t  s 

 

4. Curl H = J + D 4.  H . dl =  J. da +  Jd . da 

t s s 

 

5. Div J = -  5.  J. da = -   dv 

t s t v 

 

2. Maxwell’s Equations for Static Fields (Time Invariant Fields): 

 

1. Div D = 

2. Div B = 0 

3. Curl E = 0 

4. Curl H = J 

5. Div J = 0 

 

3. Maxwell’s Equations for Dielectrics: 

 

1. Div D = 0 

2. Div B = 0 

3. Curl E = - (B/t) 

4. Curl H = (D/t) 

5. Div J = 0 

 

4. Maxwell’s Equations for Good Conductors: 

 

1. Div D = 0 

2. Div B = 0 

6. Curl E = - (B/t) 

3. Curl H = J 

4. Div J = 0 

 

5. Maxwell’s Equations for Free Space: 
 

1. Div D = 0 

2. Div B = 0 

3. Curl E = - (B/t) 

4. Curl H = (D/t) 

5. Div J = 0 

(Contd …54) 
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
2
 H = 0 0 

2
H/t

2
 


2
 E = 0 0 

2
E/t

2
 

 

 

6. Maxwell’s Equations for Harmonically Varying Fields: 

 

Substitute  (D/t) = jD; (B/t) = jB 

1. Div D = 

2. Div B = 0 

3. Curl E = -jB 

4. Curl H = J + jD = E + jE = (+j)E 

5. Div J = - (/t) = -j



7. Free Space Electromagnetic Wave Equation: 
 

we know, 

Curl E = -(B/t) 

 x E = -  (H/t) ........................................(1) 

Curl H = J +(D/t) 

 x H = (D/t) since J = 0 in free space 

 Curl H =  (E/t) .........................................(2) 

Taking curl on both sides for equation (2) 

 x  x H =  /t ( x E) 

 (.H) - 
2
 H =  /t ( x E) ....................(3) 

 

we know that  . H = 0 and substitute (1) in (3) 

- 
2
 H =  /t (- H/t) 


2
 H =  

2
H/t

2
 

in free space r = 1, r = 1 

 …..(4) 

This is called free space electromagnetic wave equation in terms of „H‟. 

From equation 1:  x E = -  (H/t) 

taking curl on both sides and substitute  x H = D/t 

 (.E) - 
2
 E = - /t (D/t) 

We know that  . E = 0 

- 
2
 E = - /t ( E/t) 

 

 …..(5) 

 
since in free space r = 1, r = 1 

This is called free space electromagnetic wave equation in terms of „E‟. (Contd,..55) 
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OBJECTIVES 
 

 

1. Magnetic flux density at a point distance R due to an infinitely long linear conductor carrying a 

current I is given by (CIVIL SERVICES’93) 

(a) B = 1/(2R) (b) B = I / 2R (c) B = I / 2R (d) B = I / 2R
2
 

2. Maxwell‟s divergence equation for the magnetic field is given by (CIVIL SERVICES’93) 

(a)   B = 0 (b)  . B = 0 (c)   B =  (d)  . B = 

3. Consider the following statements regarding Maxwell‟s equation in differential form (symbols 

have the usual meanings) (CIVIL SERVICES’94) 

1. For free space   H = ( + j)E 

2. For free space . B = 

3. For steady current   H = J 

4. For static electric field  . D = 

Of these statements: 

(a) 1 & 2 are correct (b) 2 & 3 are correct (c) 3 & 4 are correct (d) 1 & 4 are correct 

 

4. When an iron core is placed between the poles of a permanent magnet as shown below, the 

magnetic field pattern is: 
 

(a) 

 
(b) 

 
(c) 

 

(d) 
 

5. The M.K.S unit of magnetic field H is 

(a) ampere (b) weber (c) weber per square meter (d) ampere per meter 

6. The reflection coefficient, characteristic impedance and load impedance of a transmission line are 

connected together by the relation 

(a) Kr =
 ZL + Z0

 

Z0 – ZL 
(b) Kr =

 Z0 ZL
 

0 L 

 

(c) Kr = 
 ZL - Z0 

ZL + Z0 
(d) Kr =

 ZL - Z0
 

0 L 

7. The characteristic impedance of a lossless transmission line is given by 

(a) (LC) (b) (L/C) (c) 1 / LC (d) (C/L) 

8. Poynting vector signifies 

(a) current density vector producing electrostatic field 

(b) power density vector producing electromagnetic field 

(c) current density vector producing electromagnetic field 

(d) power density vector producing electrostatic field 

9. The capacitance per unit length and the characteristic impedance of a lossless transmission line are 

„C‟ and „Z0‟ respectively. The velocity of a traveling wave on the transmission line is: (GATE’96) 

(a) Z0C (b) 1 / (Z0C) (c) Z0 / C (d) C / Z0 

10. The equation for distortionless transmission is R/G = L/C. To attain it, in a line, 

(a) of all the parameters, it is best to increase L for distortionless transmission 

(b) Keeping R, and L constant it is preferable to increase or decrease G, and C 

(c) the inductance can be added at any interval 

(d) the inductance can be of any value 

One Mark Questions 

S N 

S N 

S N 

S N 
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11. The inconsistency of continuity equation for time varying fields was corrected by Maxwell and 

the correction applied was (CIVIL SERVICES) 

(a) Ampere‟s law, D/t (b) Gauss‟s law, J 

(c) Faraday‟s law, B/t (d) Ampere‟s law,  / t 

 

12. Which one of the following statements DOES NOT pertain to the equation  . B = 0 ? 

(a) There are no sinks and sources for magnetic fields (IES’97) 

(b) Magnetic field is perpendicular to the electric field 

(c) single magnetic pole cannot exist 

(d) B is solenoidal 

 

13. For incidence from dielectric medium (1) into dielectric medium 2(2) the browster angle p and 

the corresponding angle of transmission t for 2/1 = 3 will be respectively (IES’98) 

(a) 30 and 30 (b) 30 and 60 (c) 60 and 30 (d) 60 and 60



14. A transmission line whose characteristic impedance is a pure resistance (GATE’92) 

(a) must be a lossless line (b) must be a distortionless line 

(c) may not be a lossless line (d) may not be a distortionless line 

 

15. A very lossy, /4 long, 50 ohms transmission line is open circuited and the load end. The input 

impedance measured at the other end of the line is approximately (GATE’97) 

(a) 0 (b)  (c) 50 ohms (d) none of the above 

 

16. The intrinsic impedance of copper at high frequencies is (GATE’98) 

(a) purely resistive (b) purely inductive 

(c) complex with a capacitive component (d) complex with an inductive component 

 

17. The depth of penetrations of wave in a lossy dielectric increases with increasing (GATE’98) 

(a) conductivity (b) permeability (c) wave length (d) permittivity 

 

18. The equation  . J = 0 is known as (IES’00) 

(a) Poisson‟s equation (b) Laplace equation 

(c) Continuity equation (d) Maxwell equation 
 

 

 

19. A slab of uniform magnetic field deflects a moving charged particle by 45 as shown in figure. 

The kinetic energy of the charged particle at the entry and exit points in the magnetic field will 
change in the ratio of 

B
 

(a) 1 : 2 

(b) 2 : 1 

(c) 1 : 1 
(d) 1 : 2 

45



20. In the figure shown below, the force acting on the conductor PQ is in the direction of 

(a) PQ 

(b) QP 

(c) – n 
I n I 

(d) n 
P I Q

 

-n 

Two Mark Questions 
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r 

21. A straight wire of circular cross – section carries a direct current I, as shown in figure below. If R 

is the resistance per unit length of the wire, the poynting vector at the surface of the wire will be 

(a) RI
2
 . n (b) RI

2
   .  (- n ) (IES’93) 

 

2r 2r 

 

(c) RI
2
 . n (d) RI

2
 . (- n ) 

2  2

22. A transverse electromagnetic wave with circular polarization is received by a dipole antenna. Due 

to polarization mismatch, the power transfer efficiency from the wave to the antenna is reduced to 

about (GATE’96) 

(a) 50% (b) 33.3% (c) 25% (d) 0% 

23. Following equations hold for the time – varying fields: (ICS’96) 

i)   E = - (B/t) 

ii) E = - V – (A/t) 

iii) 
2
V + /t(.A) = - (v/) 

iv) B =   A 

v)   H = J + E/t 

In the above equation: 

(a) both V and A are completely defined and thus can be evaluated 
(b) V is completely defined but not A 

(c) A is completely defined but not V (d) both A and V are not completely defined 

24. Match List – I with List – II and select the correct answer using the codes given below the lists: 

List – I List – II (ICS’96) 

A)  (J + D/t) . n ds 1) zero 

B) -  (B/t) . n ds 2)  dv 

s v 

C)  D . n ds 3)  E . dl 

s c 

D)  B . n ds 4)  H . dl 

s c 

5)  B dv 

v 

Codes: 

(a) A-4,B-3,C-2,D-1 (b) A-3,B-4,C-2,D-1 (c) A-2,B-5,C-4,D-1 (d) A-4,B-2,C-3,D-1 

25. The energy stored in the magnetic field of a solenoid 30 cm long and 3 cm diameter wound with 

1000 turns of wire carrying a current of 10A is (GATE’96) 

(a) 0.015 Joule (b) 0.15 Joule (c) 0.5 Joule (d) 1.15 Joule 

26. Match List – I with List – II and select the correct answer using the codes given below the lists: 

List – I(Maxwell‟s equation) List – II (IES’95) 

A)   H = J + D/t 1) Faraday‟s law 

B)   E = -(B/t) 2) Gauss‟s Law 

C)  . D =  3) Ampere‟s law 

Codes: 

(a) A – 3,B – 1,C – 2 (b) A – 2,B – 1,C – 3 (c) A – 3,B – 2,C – 1 (d) A – 1,B – 2,C – 3 

27. Match List – I with List – II and select the correct answer using the codes given below the lists: 
List – I List – II (ICS) 

A)   E = 0 1)  H . dl =  J . dA  

B)  . D =  2)  E . dl = 0  

C)   B = 0J 3)  B . dl = 0  

D) .B = 0 4)  E . dA =   dV  

Codes: 

(a) A-1,B-2,C-3,D-4 (b) A-2,B-3,C-1,D-4 (c) A-3,B-4,C-1,D-2 (d) A-2,B-4,C-1,D-3 



27.d 28.d 29.c 30.a 31.b 32.a 33.b 34.b 35.a 36.c (Contd…..59) 
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28. Match List – I with List – II and select the correct answer using the codes given below the lists: 

List – I 
A) Electric field E 
B) Magnetic flux density B 

List – II 
1) amp/metre

2
 

2) coulomb/metre
2
 

(ICS) 

C) Current density J 3) amp/metre  

D) Magnetic field strength H 4) Volt/metre  

 5) Tesla  

Codes:   

(a) A-5,B-4,C-1,D-2 (b) A-4,B-3,C-2,D-1 (c) A-1,B-4,C-2,D-5 (d) A-4,B-5,C-1,D-3 

 

29. A transmission line of characteristic impedance 300 is terminated by a load of (300 – j300). 

The transmission coefficient is 

(a) 1.12 76.68 (b) 1.08 76.68

 

(c) 1.265 -18.43

(NTPC’98) 

(d) 0.791-18.45
 

30. The input impedance of a lossless transmission line is 100 when terminated in a short – circuit, 

and 64 when terminated in an open circuit. The characteristic impedance of the line is 

(a) 80 (b) 164 (c) 36 (d) 64 (IES’97) 

 

31. Match List – I with List – II and select the correct answer using the codes given below the lists: 
List – I  List – II (IES’98) 

A)  . D =   1) Ampere‟s law  

B)  . J = -(/t)  2) Gauss‟s law  

B)   H = JC  3) Faraday‟s Law  

C)   E = -(B/t) 

Codes: 
(a) A-4,B-2,C-1,D-3 

 
 

(b) A-2,B-4,C-1,D-3 

4) Continuity equation 

 
(c) A-4,B-2,C-3,D-1 

 
 

(d) A-2,B-4,C-3,D-1 

 

32. Which of the following pairs of parameters and expressions is/are correctly matched? 

1. Characteristic impedance ……… (E/H) r (IES’98) 

2. Power flow density .........................   H 

3. Displacement current in 

non - conducting medium ............... E  H 

Select the correct answer using the codes given below. 

Codes: 

(a) 1 alone (b) 2 and 3 (c) 1 and 3 (d) 1 and 2 

 

33. If the electric field E = 0.1te
-1

ax and  = 40, then the displacement current crossing an area of 

0.1m
2
 at t = 0 will be (IES’98) 

(a) zero (b) 0.04 0 (c) 0.4 0 (d) 40 

 

34. The wave length of a wave with propagation constant (0.1 + j0.2)m
-1

 is (GATE’98) 

(a) 2/0.05m (b) 10m (c) 20m (d) 30m 

 

35. The polarization of wave with electric field vector E = E0 e
j(t

 
+
 
z)

 (ax + ay) is (GATE’98) 

(a) Linear (b) elliptical (c) left hand circular (d) right hand circular 
 

36. The vector H in the far field of an antenna satisfies (GATE’98) 

(a)  . H = 0 and   H = 0 (b)  . H  0 and   H  0 

(c)  . H = 0 and   H  0 (d)  . H  0 and   H = 0 

 
Key  

1.c 2.b 3.c 4.c 5.b 6.c 7.b 8.b 9.b 10.a 11.a 12.b 13.c 

14.c 15.a 16.d 17.c 18.b 19.c 20.c 21.b 22.a 23. a 24.a 25.b 26.a 
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TOPIC – 10: INDUCTANCE OF SIMPLE GEOMETRIES E M F 

1. INDUCTANCE OF A TOROIDAL COIL: I 

R is Mean radius and N is No. of turns R 

 

where S = area of cross-section of the core 

b 

2. INDUCTANCE OF A COAXIAL CABLE: 
a
 

 

Total inductance of the cable can be obtained by multiplying the above 

equation with the length of the cable. 

 
 

3. INDUCTANCE OF SOLENOID: 
 

 

 








4. INDUCTANCE OF 1- LINE ;-  

 
H/m / conductor 

A   X  
P B 
11 

r 
dx 

 

For a transmission line of length „l‟ meter, there are l number 

of inductors in series.Total inductance is the product of inductance 

per meter length and the length of the line. 

 

Total inductance =L l 

 

Loop inductance is a series combination of forward and return 

conductors. Loop inductance of single phase line is 2Ll . 

 
 

5. SINGLE LAYER AIR CORE COIL: 

x (d-x) 

 

 

(d-r) 

d 

 

 

 

6. MULTI LAYER AIR CORE COIL: 

 

** ALL THE BEST ** 

 L = 39.5 N
2
a

2
 

9a+10l 

oN
2
S 

2R 
 L = 

H/m 
 o ln(b/a) 

2
 L = 

 L = 31.6 N
2
r1 

6r1+ 9l + 10(r2 – r1) 

L 

r1 
r2  l  

L = 2ln d – r  10
-7

 

r 

L = N
2
A

l 


